平成26年度

金沢大学がん進展制御研究所 共同研究成果報告書

2015.4

金沢大学がん進展制御研究所

研究区分		特定共同研究			
	研究課題	白血病幹細胞のエピジェネティクス制御機構の解明			
研究代表者	所属・職名・氏名	千葉大学大学院医学研究院·教授·岩間厚志			
研究分担者	所属・職名・氏名	千葉大学大学院医学研究院·講師·指田吾郎			
受入担当教員	職名・氏名	教授・平尾敦			
【研究目的】	造血幹細胞の維持・機能に	関わるエピジェネティック分子の機能異常がどのように白血病幹細胞			
	の増殖優位性に繋がるのか、	重要な課題である。申請者らが解析を進めているポリコーム群遺伝子			
	は、造血器腫瘍で変異が認め	られ、その変異は <i>TET2</i> 変異や <i>RUNX1</i> 変異、またはコヒーシン関連遣			
	伝子変異と共存することが報告	されており、このような変異との協調作用により白血病幹細胞の成立			
	維持に機能するものと想定され	る。そこで、これらの変異をポリコーム群遺伝子欠損造血幹細胞に導			
	入し、移植マウス個体における	造血の解析を通して、ポリコーム群遺伝子と協調して白血病発症に関			
	わるこの仮説を検証する。				
研究内容・成果	ポリコーム群複合体は、ヒスト	ン修飾を介して転写を抑制的に制御する。ポリコーム群複合体は、乾			
	細胞制御に重要な分子群として	て解析されてきたが、ポリコーム群遺伝子 EZH2 の機能喪失型変異か			
	骨髄異形成症候群 (MDS) を	はじめとした骨髄球系腫瘍で同定された。固形腫瘍においてもポリニ			
	ーム群遺伝子 EED や SUZ12 の欠失や機能喪失型変異が報告され、ポリコーム群遺伝子は病態によ				
	り癌抑制遺伝子として機能する	ものと想定される。本研究においては、平尾先生のご指導のもと、レ			
	ロウイルスを用いてマウス造血草	幹細胞に MDS で			
	見られる RUNX1 変異体を発				
	血細胞特異的に Ezh2 を欠損	Color Laborator			
	いて MDS の発症が著明に促	進されることを明ら 🕎 🚜 🚾 WT			
	かにした。この知見は、MDS (において、ポリコー 20 Rx291			
	ム群遺伝子と RUNX1 変異が				
	実と符合するものであり、異なる	る変異遺伝子間の 0 60 120 180 240 300			
	協調作用を明白に示している	(Sashida et al., Nat Time in days			
	Commun 2014)。 近年、non-canonical ポリコーム群複合体構成遺伝子として BCOR, BCORL1 が同				
	定されたが、これらの遺伝子の	機能喪失型変異も MDS や急性白血病、再生不良性貧血においても			
	同定されている。現在は、BCO	R 欠損マウスや BCORL1 ノックダウンの系を用いて、その造血腫瘍~			
	の関与を解析中である。				
【成 果 等】	Muto T, Inaba T, Koseki H, Hu	shima M, Yui M, Harada Y, Tanaka S, Mochizuki-Kashio M, Wang C, Saraya A Luang G, Kitamura T, and <u>Iwama A</u> . Ezh2 loss promotes development of enuates its predisposition to leukemic transformation. Nat Commun 5:4177			
		roup genes in the pathogenesis of myeloid malignancies" Stem cells an shop. October 16-18, 2014 (Hong Kong, China)			

【その他特筆事項】

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

	研究区分		/(/()	-73 · 70 (<u>m</u>),	区 [[1] [[4] [4] [7] [7]	共同研究報告書	空	
研究課題			NOC				とがん発生・悪性	
William Control				NOG マウスをプラットフォームとした消化器がん発生・悪性 化研究のための新規モデルマウスの開発				
TT か / L 士 土	- 市届 -	・職名・氏	夕.			研究所動物資源基盤		マー長・宮棒利一
研究代表者								
	所属•	・職名・氏	名	公財)実験動物中央研究所動物資源基盤技術センター資源開発				マー資源開発室・
					員・伊田幸			
研究分担者	所属•	・職名・氏	名	公財	実験動物中央	研究所 動物資源基	盤技術セン	/ター資源開発室・
				研究	員・香川貴洋			
	所属•	・職名・氏	名	公財) 実験動物中央研究所 動物資源基盤技術センター資源開				/ター資源開発室長
				後藤	元人			
受入担当教員	職	名・氏名		教授	・大島正伸			
【研 究 目 的】	model を用いた APC ∆ 716 より、APC 込 きる。本研究	いた解析は シノックアリ 遺伝子変異り 究ではゲノ・	あまり ウトマ こよる ム編集	なされて ウスに対 Wnt 活性 技術の一	いない。金沢大 して、実中研で 化による大腸が	こどのように作用する 学がん進展制御研究 開発した NOG マウス ん発生過程において A/Cas システムを利用	所・大島I の重度免疫 宿主免疫及	E伸教授が開発され 安不全形質の導入に 反応の役割を解明で
【研究内容・成果】			1007 &	-1122/ 0		J7C ₀		
	MIT の Fer	ng Zhangの	研究室	のホーム	ページで公開さ	れている、CRISPR I	esign Too	1を使って、APC 遺
				に、4種類	頁の標的配列を	設計することができ;	た。	
	2) GFP アッ			AG-FGvvFl	ロプラスミドを	用い、HEK293 細胞を	使った GFI) アッセイにて煙的
	_				記列を選抜した。		C > 7C 011	
	3) DNA インジェクションの結果							
						を 5ng/ul で 1st トラ		
						ックアウトマウスは 匹の産子を得る事が゛		ごめることから、DNA
	4) 変異個(Ziia į) I E I.		二0万15月040	C 7C0	
						ンダーマウスのテーク		
	1					クトシークエンスで		
						て分離してからシーク ・のうち 6 種のフレ		
					変異個体が得られ、そのうち、6 種のフレームシフトの起こる個体(モ が出来た。(下表)			
	ADOA亦思	・コーウング	→ → → 11	→ L				
	個体番号	と ファウンダー 出生日	性別	APC	APC変異	APCΔ	IL-2Rg	scid
	4	2014/9/24	우	MT/WT	-1 1	∆723 ∆723	KO/+ KO/+	scid/+
	6 7	2014/9/24 2014/9/24	우 우	MT/WT	-1 -13, -6, -5, -1	△719, △733, △723	KO/+	scid/+
	8 10	2014/9/24 2014/9/24	우 우	MT/WT MT/WT	−1 −15+5. −35	∆ 723 ∆ 717, ∆ 723	KO/+ KO/+	scid/+ scid/+
	16	2014/10/1	ð	MT/WT	-1	Δ723	+/Y	scid/+
	18 23	2014/10/1 2014/10/1	장 우	MT/WT MT/WT	-1 -22+6	Δ723 Δ734. Δ736	+/Y KO/+	scid/+ scid/+
	24	2014/10/1	우	MT/WT	-5	Δ733	KO/+	scid/+
	28	2014/10/1	ď	MT/WT	-2	∆734	+/Y	scid/+
	5) 今後のF		- 10 D	L L	Melli Abot 5	10 1, 回径) > 四份(吃点	12876 IL 1-	フム仏オーフェント
		NOG マウスとの交配により F1 マウスを作出し、APC △716 と同様に腸管腫瘍が発生するか検証する。また オフターゲット切断の有無の検査を実施する。また、今後本系統の頒布に向けシークエンシングに寄ら						
						ウスの系統樹立及ひ		
【成 果 等】	【主な論文							-
	なし							
	【学会発表】							
	なし	tota de con T						
	【その他特筆事項】							

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

		・ん 進 展 制 御 妍 先 別 「 共 内 妍 先 報 古 青
	研究区分	特定共同研究
	研究課題	p53-Rb ネットワークによるがん幹細胞代謝制御機構の基盤的
		研究
研究代表者	所属・職名・氏名	千葉大学大学院医学研究院・准教授・田中知明
	所属・職名・氏名	Columbia University・教授・Carol Prives
研究分担者	所属・職名・氏名	千葉大学大学院医学研究院・助教・鈴木佐和子
	所属・職名・氏名	金沢大学がん進展制御研究所・博士研究員・河野晋
	所属・職名・氏名	金沢大学がん進展制御研究所・博士大学院生・吉田晶代
受入担当教員	職名・氏名	教授・高橋智聡
【研究目的】	など細胞の恒常性維持に重要が かってきた。加えて、p53KO 幹細胞様の形質を引き起すだけ が重要であることを突き止めて がん組織や動物モデルの発現	よる代謝制御の基盤的研究については、ROS・エネルギー代謝調質な役割を果たし、幹細胞性/がん幹細胞性制御と密接に関わる事がまマウス由来の腫瘍において、Rb 経路をサイレンシングすると、がんけでなく、ES/iPS と同様の代謝変化が生じ、中でもグルタミン代調できた。本共同研究では、これまでの p53-Rb ネットワークの知見を解析と密接に結びつけ、がん幹細胞制御の具体的な分子標的の探索と
【研究内容・成果】	知られている。近年ではp53 かグラミングを抑制することで、p53 と共に 2 大癌抑制経路を可抑制することが明らかとなり、しか体細胞変異が見られたないと性や分子メカニズムは十分に更p53 と GATA3 に焦点をあて、GAへの影響を検討した。Sphere a乳がんにおける悪性形質転換に知りの GATA3 転写複合をした。の表現群が低発現群に対って、癌の表現群に対して、癌ので表現群が低発現群に対して、のでは、低発現群が低光のとして、RuvB12 は、癌の表現群に対して、のであるとのとのでは、これに、現在これらの、p53 と GATA3 によっている。近年によっては、た。現在これらの、p53 と GATA3 によっている。近年では、原本には、p53 と GATA3 によっては、た。現在これらの、p53 と GATA3 によっては、た。現在これらの、p53 と GATA3 によっては、p53 と GATA	Eは、増殖、再発、転移、そして治療抵抗性と密接に関与することが、癌幹細胞の自己再生・複製や somatic/progenitor 細胞のリプロ乳癌の増殖・進行を防ぐことが報告され注目を集めている。一方で引る Rb やその上流遺伝子 GATA3 も progenitor 細胞の増殖や悪性化を更には、10%以上の原発性乳がんで、p53, GATA3 および PIK3CA にという報告もある。しかしながら、癌幹細胞における、それらの関連明らになっていない。そこで、癌幹細胞制御に重要な役割を果たすATA3 結合タンパクの探索的解析、乳がん組織における悪性度・予後高say を用いた癌の悪性度を評価する系より、p53 経路の調節解除がこ重要な役割を果たすことが示唆された。次に、GATA3-Rb 経路の専門的で、LC-MS/MS を用いて GATA3 結合分子の同定を行った。その紹介体の会合分子が、乳癌細胞において同定された。その中の一つである他の会合分子が、乳癌細胞において同定された。その中の一つである。RuvBL2 に着目した。乳がん患者の GEO database 解析を行った結果高発現群と低発現群の間に有意な差がみられ、Kaplan-Meier 法にて責生存の有意な短縮を認めた。これらの結果は、p53 や GATA3 の癌が出胞性の悪性形質抑制のメカニズムが示された。また、MS 解析によるを同定した。RuvBL2 は GATA3 の抑制機能を負に阻害することで過失際に、ヒト乳がん患者の予後悪化に関与していることが示唆される3/Ruvb12-Rb システムが、脂質合成経路やグルタミン代謝制御ととしてれらがどのように乳癌における幹細胞性性質(スフィア形成能いる。
【成 果 等】	Matsumoto, M., Nakayama, transactivation of the <i>II5</i> general genera	hyama, H., Tamaki, Y., Endo, Y., Kimura, M. Y., Tumes, D. J., Motohashi, S. K. I., <u>Tanaka, T.</u> , and Nakayama, T.: Methylation of Gata3 at Arg261 regulate: e in T helper 2 cells. <i>J Biol Chem</i> . (査読有) と老年疾患, 医学のあゆみ . 253(9):15107-1512. (2015) 本直子、永野秀和、小田瑞穂、松本雅記、横手幸太郎、田中知明(2014)。 等因子 p53 と GATA3 の機能的役割と乳癌における予後・悪性度との関党術総会、9 月 25 日、横浜。 上聡、鈴木穣、菅野純夫、横手幸太郎、田中知明(2014)。 ulates pluripotency in human ES/iPS cells through the control o トコンドリア分子 GLS2 のヒト ES/iPS 細胞におけるグルタミン代謝を表現の日本癌学会学術総会、9 月 26 日、横浜。

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書					
	研究区分	特定共同研究			
	研究課題	がん幹細胞形質を指標とした新規がん治療標的分子の同定			
研究代表者	所属・職名・氏名	国立がん研究センター研究所・分野長・河野隆志			
研究分担者	所属・職名・氏名	国立がん研究センター研究所・ポスドク研究員・中奥敬史			
受入担当教員	職名・氏名	教授・後藤典子			
【研究目的】	肺がんでは、RET, ALK, ROS, NRG1等の受容体型チロシンキナーゼ遺伝子や関連遺伝子の融合が生じ、融合遺伝子はマウス線維芽細胞の形質転換能を持つことを明らかになっている。その中でも、NRG1 は融合のみならず高発現によるがん化への寄与も散見され、その対象は肺がんに限られないことが最近明らかとなってきた。しかし、NRG1 を標的とした治療を実現するためには、NRG1 ががん幹細胞形質・薬剤抵抗性に与える影響や、それに関連する下流シグナル伝達経路の解明が必須である。そこで、本共同研究では、NRG1 融合遺伝子cDNA を強制発現させたヒトがん細胞株における、がん幹細胞形質の獲得と薬剤によるその形質の阻害作用を検討した。本研究の成果は、NRG1 融合遺伝子を標的としたがん治療法開発に大きな意義を持つ。				
【成 果 等】					
	【学会発表】 1. 中奥敬史、蔦幸治、渡邉俊一、軒原浩、金永学、三嶋理晃、横田淳、河野隆志: Lung invasive mucinous adenocarcinoma (IMA)における治療標的となる新規遺伝子融合、第 55 回日本肺癌学会学術総会、京都、11 月、2014 年 2. 中奥敬史、市川仁、白石航也、坂本裕美、江成政人、荻原秀明、軒原浩、岡山洋和、金永学、三嶋理晃、横田淳、吉田輝彦、河野隆志: Druggable Oncogene Fusions in Invasive Mucinous Lung Adenocarcinoma, 第 73 回日本癌学会学術総会、横浜、9 月、2014 年 3. Takahiko Murayama, Takashi Nakaoku, Koji Tsuta, Masato Enari, Tatsunori Nishimura, Kana Tominaga, Asuka Nakata, Arinobu Tojo, Sumio Sugano, Takashi Kohno, Noriko Gotoh CD74-NRG1 is a potential oncoprotein that promotes cancer stem cell properties.第 73 回日本癌学会学術総会、横浜、9 月、2014 年 【その他特筆事項】なし				

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

	研究区分	特定共同研究
	研究課題	肺がん・中皮腫における血管新生阻害薬耐性機構の解析
研究代表者	所属・職名・氏名	徳島大学・教授・西岡安彦
	所属・職名・氏名	徳島大学・准教授・埴淵昌毅
研究分担者	所属・職名・氏名	徳島大学・講師・柿内聡司
	所属・職名・氏名	徳島大学・講師・後東久嗣
受入担当教員	職名・氏名	教授・矢野聖二
【研究目的】	法の開発を目的に臨床を反映的な役割を担う VEGF に焦点計から本モデルにおける抗 V維芽細胞増殖因子(fibroblast線維細胞(fibrocyte)から産業細胞であることを確認し、さついて解析することを目的と	
【研究内容・成果】	べバン collagen type I [†] /CXCR4 [†] して collagen type I [†] /CXCR4 [†] して collagen type I [†] /CXCR4 [†] に の細胞が fibrocyte であした。 fibrocyte 数が増加したいた。 認するため、GFP 陽ナメールを対したのでは、 では、 では、 では、 では、 では、 では、 では、 では、 では、	るのヒト悪性腫瘍で生じていることを確認するため、ベバシズマiがん組織検体を用いて、腫瘍内 fibrocyte を免疫組織学的に検出 ジシズマブを含まない化学療法施行後に摘出された検体と、手術身に検討した。結果、ベバシズマブを含む化学療法後に切除されて有意に fibrocyte 数および FGF2 産生細胞数が増加していた。さけ fibrocyte 数と術前ベバシズマブ投与サイクル数および腫瘍内血にれらの結果から、実際のヒト肺がんにおいても腫瘍のベバシズ
【成 果 等】	【主な論文発表】 1) Matsuo T, Dat LT, Komatsu E Growth Response 4 Is Inv Transcriptional Activation of 2) Goto H, Mitsuhashi A, Nishi Med Invest 61(1,2):1-6, 2014 3) Nishioka Y. New wave of im Res 3(1):1, 2014. 4) Hanibuchi M, Kim SJ, Fidler	M, Yoshimaru T, Daizumoto K, Sone S, Nishioka Y, Katagiri T. Early volved in Cell Proliferation of Small Cell Lung Cancer through Its Downstream Genes. PLoS ONE. 9(11):e113606, 2014. ioka Y. Role of surfactant protein A in non-infectious lung diseases. J. mmunotherapy against lung cancer rolls in to clinic. Transl Lung Cancer IJ, Nishioka Y. The molecular biology of lung cancer brain metastasis: aprehensions and future perspectives. J Med Invest 61(3,4):241-253,

【学会発表】

- 1) Hisatsugu Goto, <u>Yasuhiko Nishioka</u>. The role of surfactant protein A in the host defense of the lung. The 117th Conference of KATRD (Invited lecture). Buan, Korea. 2014 年 4 月 11 日.
- 2) Hisatsugu Goto, Atsushi Mitsuhashi, Atsuro Saijo, Trung The Van, Yoshinori Aono, Hirohisa Ogawa, Soji Kakiuchi, Masaki Hanibuchi, <u>Seiji Yano</u>, Keisuke Izumi, <u>Yasuhiko Nishioka</u>. The role of fibrocytes in the resistance to anti-angiogenic therapy in malignant pleural mesothelioma and lung cancer. ATS 2014 International Conference (Mini-symposium). San Diego, CA. 2014 年 5 月 21 日.
- 3) **西岡安彦**. がん分子標的治療の基礎と臨床.平成 25 年度徳島臨床細胞学会総会および学術集会(特別講演). 徳島. 2014 年 3 月 6 日.
- 4) <u>西岡安彦</u>. 肺がん・中皮腫における血管新生阻害薬耐性. 第54回日本呼吸器学会学術講演会(シンポジウム). 大阪. 2014 年4月26日.
- 5) 後東久嗣, 三橋惇志, 阿部秀一, 青野純典, <u>西岡安彦</u>. 呼吸器疾患における慢性炎症と fibrocyte. 第54回日本呼吸器学会学術講演会(シンポジウム). 大阪. 2014 年 4 月 27 日.
- 6) 後東久嗣, 三橋惇志, 西條敦郎, 倉本卓哉, 田畑祥, 埴淵昌毅, 柿内聡司, 青野純典, 上原久典, 西岡安彦. ベバシズマブに対する獲得耐性メカニズムとしての線維細胞 (fibrocytes) の役割. 第18回日本がん分子標的治療学会学術集会(シンポジウム). 仙台. 2014 年6月27日.
- 7) <u>西岡安彦</u>. がん免疫療法の過去と未来: エビデンスが示した新たな可能性. 第 62 回日本口腔学会 中国・四国地方部会(特別講演). 徳島. 2014 年 10 月 25 日.
- 8) 阿部真治, 加藤幸成, 金子美華, 東満美, 後東久嗣, 埴淵昌毅, <u>西岡安彦</u>. 悪性胸膜中皮腫 同所移植モデルにおける抗ポドプラニン抗体の抗腫瘍効果. 第 54 回日本呼吸器学会学術講 演会. 大阪. 2014 年 4 月 25 日.
- 9) 柿内聡司, 大塚憲司, 佐藤正大, 西條敦郎, 坂口暁, 後東久嗣, 埴淵昌毅, <u>西岡安彦</u>. 当院に おける間質性肺炎合併肺癌の治療の現状. 第54回日本呼吸器学会学術講演会. 大阪. 2014年 4月26日.
- 10) 大塚憲司, 阿部真治, 埴淵昌毅, 木宿昌俊, 川添和義, 加藤幸成, <u>西岡安彦</u>. 胸膜中皮腫同所移植モデルにおける抗ポドプラニン抗体の抗腫瘍効果. 第 18 回日本がん分子標的治療学会学術集会. 仙台. 2014 年 6 月 26 日.
- 11) 後東久嗣, 三橋惇志, 倉本卓哉, 田畑祥, 西條敦郎, 柿内聡司, 埴淵昌毅, 上原久典, <u>西岡</u> <u>安彦</u>. 肺癌多臓器転移モデルにおける sphere 形成癌幹細胞様分画の役割. 第 23 回日本がん 転移学会学術集会・総会. 金沢. 2014 年 7 月 10 日.
 - 12) 山子泰斗,後東久嗣,三橋惇志,倉本卓哉,田畑祥,西條敦郎,柿内聡司,埴淵昌毅,小川博久,上原久典,西岡安彦. ヒト小細胞肺癌骨転移に対する RANKL 標的治療における IGF-1の関与.第23回日本がん転移学会学術集会・総会.金沢.2014年7月10日.
- 13) 加藤幸成, <u>西岡安彦</u>. 血小板凝集因子 Podoplanin に対するがん特異的抗体の開発. 第23回 日本がん転移学会学術集会・総会. 金沢. 2014年7月11日.
- 14) 大塚憲司,後東久嗣,葉久貴司,兼松貴則,浦田知之,柿内聡司,埴淵昌毅,大串文隆,曽根三郎,**西岡安彦**. 高齢者進行非小細胞肺癌患者を対象として PRO 評価を取り入れた TS-1 療法の臨床第Ⅱ相試験.第12回日本臨床腫瘍学会学術集会.福岡.2014年7月18日.
- 15) 坂口暁, 後東久嗣, 大串文隆, 葉久貴司, 兼松貴則, 浦田知之, 柿内聡司, 埴淵昌毅, 曽根三郎, <u>西岡安彦</u>. 高齢者進行 NSCLC 患者を対象として PRO 評価を取り入れた TS-1 療法の臨床第Ⅱ相試験. 第52回日本癌治療学会学術集会. 横浜. 2014年8月28日.
- 16) 後東久嗣, 三橋惇志, 西條敦郎, 柿内聡司, 埴淵昌毅, 上原久典, <u>矢野聖二</u>, <u>西岡安彦</u>. ベバシズマブに対する獲得耐性メカニズムとしての線維細胞(fibrocytes)の役割. 第 73 回日本癌学会学術総会. 横浜. 2014 年 9 月 27 日.
- 17) 加藤幸成, 金子美華, 小笠原諭, <u>西岡安彦</u>. がん特異的抗ポドプラニン抗体の樹立. 第 73 回日本癌学会学術総会. 横浜. 2014 年 9 月 27 日.
- 18) 柿内聡司, 大塚憲司, 佐藤正大, 西條敦郎, 坂口暁, 後東久嗣, 埴淵昌毅, <u>西岡安彦</u>. 当院 における間質性肺炎合併肺癌の治療の現状. 第55回日本肺癌学会学術集会. 京都. 2014年11月 16日.

【その他特筆事項】

研究区分		一般共同研究				
研多	汽課題	新規ER制御分子BIG3を介した内分泌療法耐性メカニズムの解明との				
		新規乳癌治療法の開発				
研究代表者	所属・職名・氏名	徳島大学疾患プロテオゲノム研究センター・教授・片桐豊雅				
研究分担者	所属・職名・氏名	徳島大学疾患プロテオゲノム研究センター・助教・吉丸哲郎				
	所属・職名・氏名	徳島大学疾患プロテオゲノム研究センター・特別研究学生・宮川義仁				
受入担当教員	職名・氏名	教授・平尾敦				
【研究目的】	新規エストロゲン受物 特に、非ゲノム的活性 る BIG3 の関与およて 抗腫瘍効果を検討し、	ターゼ阻害剤やタモキシフェンを含む内分泌療法耐性乳癌細胞における容体(ER)制御分子 BIG3 と ER 活性抑制因子 PHB2 の複合体の生理的意義、性化経路である PI3K-AKT とその下流である mTOR シグナル活性化におけず内分泌療法耐性乳癌における BIG3-PHB2 結合阻害ペプチド(ERAP)の、内分泌療法耐性耐性乳癌に対する ERAP の新規治療薬の可能性およびる ER 選択的機能阻害剤フルベストラントと ERAP の併用による抗腫瘍る。				
【研究内容·成果】	臨床的に問題とな	っているエストロゲン(E2)と増殖因子によるシグナルのクロストーク				
	が内分泌療法耐性獲	得に寄与していることが報告されている。本研究では、E2 と IGF、EGF				
	シグナルのクロスト	ークおよびE2とHer2増幅のクロストークによるタモキシフェン耐性を				
	獲得した乳がん細胞	における ERAP ペプチドの効果について検討した。その結果、ERAP 投与				
	により、全てのクロス	ストークシグナルの抑制が確認され、それによって細胞増殖の抑制がで				
	きることが明らかと	なった。また、タモキシフェンとの併用により、相乗的な抑制効果を				
	導くことが分かった	(成果論文 2)。一方、ER 選択的機能阻害剤であるフルベストラントと				
	の併用では、相加的	、相乗的な効果は認められなかった。これは、BIG3 から放たれた PHB2				
	の標的である ER がこ	アルベストラントによって分解され留ことに寄るのかもしれない。				
	このように BIG3-PHB2 相互作用阻害を導くことができる ERAP であるが、実際の臨床応用					
	を考えると、その阻害効果がわずか48時間で半減することから、より安定的な抗腫瘍効果					
	を導くことが必須である。そこで、これまでに PHB2 と直接結合を認めることが報告されて					
	いた天然化合物 Xanthohumol(XN)に着目した。また XN は、乳癌をはじめ多くの癌種におい					
	て抗腫瘍効果を認め	ることが報告されていたが、エストロゲン依存性乳癌におけ抗腫瘍効果				
	については不明であ	った。そこで、XNの ER 陽性乳癌におけるエストロゲン依存性の抗腫瘍				
	 効果について検討し	た。その結果、XN は PHB2 と直接結合することで、BIG3 と PHB2 の相互				
	 作用を効率的に阻害	して、PHB2のER活性の抑制機能を回復させて、エストロゲン依存性乳				
	 癌細胞株の細胞増殖	を顕著に抑制した。さらに、ER 陽性乳癌細胞株を同所移植したマウス				
		腫瘍効果の検討においても、顕著な抗腫瘍効果を認めた (成果論文 3)。				
【成果等】	【主な論文発表】(* co					
		-H, Yoshimaru T, Chen Y, Matsuo T, Komatsu, Miyoshi Y, Tanaka E,				
	_	K, Katagiri T*. PLoS One. 2015 in press.				
	·	natsu M, Miyoshi Y, Honda J, Sasa M, <u>Katagiri T</u> *. Therapeutic advances bition targeting the crosstalk between estrogen and growth factors in				
		cer Sci. 2015 in press.				
		matsu M, Tashiro E, Imoto M, Osada H, Miyoshi Y, Honda J, Sasa				
	·	thohumol suppresses oestrogen-signalling in breast cancer through the				
	•	BIG3-PHB2 interactions. Sci Rep. 2014 Dec 8;4:7355.				
		Komatsu M, <u>Yoshimaru T</u> , Daizumoto K, Sone S, Nishioka Y, <u>Katagiri</u>				
	transcriptional activation of the transcription of	sponse 4 is involved in cell proliferation of small cell lung cancer through ation of its downstream genes. <i>PLoS One.</i> 2014 Nov 20;9(11):e113606. ami Y, Ahmad S, <u>Yoshimaru T, Katagiri T,</u> Mizuguchi K. Brefeldin				
	A-inhibited guanine	nucleotide-exchange protein 3 (BIG3) is predicted to interact with its				

partner through an ARM-type α helical structure. **BMC Res Notes.** 2014 Jul 6;7:435.

【学会発表】

<u>吉丸 哲郎</u>, 小松 正人, 松尾 泰佑, <u>片桐 豊雅</u> (ロ頭発表) エストロゲン受容体制御分子 BIG3 を標的とした新規 ER 陽性乳がんの治療法の創製 第18回日本がん分子標的治療学会学術集会 2014年6月

<u>吉丸 哲郎</u>,小松 正人,三好 康雄,笹 三徳,<u>片桐 豊雅</u> (ロ頭発表) エストロゲン受容体制 御分子 BIG3 を標的とした新規 ER 陽性乳がん治療法の開発 第 73 回日本癌学会学術総会 2014 年 9 月

宮川 義仁, 小松 正人, 清谷 一馬, <u>吉丸 哲郎</u>, 笹 三徳, 三好 康雄, <u>片桐 豊雅</u> (ポスター発表) トリブルネガティブ乳癌における癌抑制遺伝子 BCLR1 の発現低下について 第73回日本癌学会学術総会 2014年9月

<u>片桐 豊雅</u>, <u>吉丸 哲郎</u>, 小松 正人 (ロ頭発表) 新規エストロゲンシグナル制御分子 BIG3 による新たながん抑制因子 prohibitin2 の機能喪失機構の解明 第73回日本癌学会学術総会 2014年9月

<u>片桐 豊雅</u>, <u>吉丸 哲郎</u>, 小松 正人 (ロ頭発表) エストロゲンシグナル制御分子 BIG3 による新たながん抑制因子prohibitin2の機能喪失機構の解明 第87回日本生化学学会大会 2014 年 10 月

Toyomasa Katagiri. A novel AKAP protein, BIG3 coodinates estrogen signaling pathways in breast cancer cells. 11th International Conference on Protein Phosphatase 2014 年 11 月

【その他特筆事項】

第18回日本がん分子標的治療学会学術集会2014年6月、吉丸 哲郎 優秀演題賞受賞

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

	平成 26 年度 金沢大学が	ん進展制御研究所 共同研究報告書 			
研究区分		一般共同研究			
	研究課題	IDH 変異を有するがんのモデル動物の作成			
研究代表者	所属・職名・氏名	国立がん研究センター・分野長・北林一生			
研究分担者	所属・職名・氏名	国立がん研究センター・研究員・小川原陽子			
受入担当教員	職名・氏名	教授・平尾敦			
【研究目的】	イソクエン酸デヒドロゲナーゼ(IDH)をコードする $IDH1$ 遺伝子及び $IDH2$ 遺伝子は、急性骨髄性白血病の他、脳腫瘍・骨髄異形成症候群・胆管がん・軟骨肉腫・骨肉腫・骨巨細胞腫・血管免疫芽球性 T 細胞リンパ腫など様々ながんにおいて高頻度に変異が見られる。野生型 IDH は、イソクエン酸を α ケトグルタル酸(\square KG)に変換するが、変異型 IDH は、野生型と異なり、 \square KGを 2 ハイドロキシグルタル酸(2 HG)に変換する活性を持つことから、変異型 IDH は正常細胞にはないがん特異的な理想的な治療標的である。しかしながら、これまでにがんにおける変異型 IDH の役割を評価する動物モデルがないため、変異型 IDH を標的とした治療薬の開発は困難であった。本研究では変異型 IDH 遺伝子変異を有する急性骨髄性白血病のマウスモデルを作製し、変異型 IDH の標的妥当性を検証を行う。				
【研究内容・成果】					
【成 果 等】	Araki K, Kitabayashi I. IDH	kawa Y, Shima Y, Kagiyama Y, Soga T, Matsunaga H, Seki T, H2 and NPM1 Mutations Cooperate to Activate Hoxa9/Meis1 and Myeloid Leukemia. Cancer Res. 2015 Mar 20. [Epub ahead of			

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

	平成 26 年度 金沢大字が 研究区分	ん進展制御研究所 共同研究報告書 一般共同研究			
研究課題		一級共同初五 がん抑制遺伝子 p53 機能喪失を伴った新規悪性胃がん病体モデ			
	1977年度	ルの作製と解析			
研究代表者	所属・職名・氏名	国立がん研究センター研究所・主任研究員・大木理恵子			
受入担当教員	職名・氏名	教授・大島正伸			
【研 究 目 的】 【研究内容·成果】	1. 消化器がんモデルマウス(K19-Wnt1/C2mE transgenic mouse)と p53 欠損マウスを掛け合わせる。p53 を野生型で持つマウス、p53 を持たないマウスから生じたがん組織を採取した。p53				
	欠損 Gan マウスの胃癌組織では、通常の Gan マウスには見られない浸潤が認められ、p53 欠損が実際にがんの悪性化を引き起こす事が示された。 2. 得られた癌組織より、mRNA を精製した。p53 を野生型で持つ Gan マウスの胃癌ではp53 が活性化しており、p53 標的遺伝子が転写誘導されていた。今後、マイクロアレイ発現解析により、p53 依存性に発現する遺伝子群を同定する。 3. 申請者は、ゲノムワイドな p53 結合部位を ChIP-chip 解析により同定している。そこで、p53 依存性に発現する遺伝子の中から、p53 結合が認められる遺伝子、すなわち p53 の直接の標的遺伝子を同定する。 4. 同定した遺伝子が、胃がんの発生及び悪性化とどのように関わるか解析する。今後、さらに詳細に p53 欠損 Gan マウスで発症した癌を解析することにより、胃癌の悪性化をいかにして p53 が抑制しているか明らかにしたいと考えている。				
【成果等】	【主な論文発表】				
	1. <u>Rieko Ohki</u> (corresponding author), Kozue Saito, Yu Chen, Tatsuya Kawase, Yukie Aita,				
	Nobuyoshi Hiraoka, Raira Saiga	wa, Maiko Minegishi, Goichi Yanai, Hiroko Shimizu, Shinichi Yachida,			
	Naoaki Sakata, Akihiko Yoko	yama, Ryuichiro Doi, Tomoo Kosuge, Kazuaki Shimada, Benjamin			
	Tycko, Toshihiko Tsukada, Yae	Kanai, Shoichiro Sumi, Hideo Namiki, Yoichi Taya, Tatsuhiro Shibata			
	and Hitoshi Nakagama. PHLI	DA3 is a novel tumor suppressor of neuroendocrine tumors. PNAS,			
	111 (23), E2404–E2413, 2014.				
	2. Toshitsugu Fujita, Miyuki Yuno, Daisuke Okuzaki, <u>Rieko Ohki</u> , and Hodaka Fujii. Identification of non-coding RNAs associated with telomeres by enChIP-RNA-Seq. PLoS One, accepted.				
【学会発表】 1. Establishment and analysis of a novel malignant gastric cancer mouse model harbot tumor suppressor gene p53. Junko Ohtsuka、Issei Ezawa、Hideo Namiki、Ryo Abe Oshima、Rieko Ohki 日本癌学会年会 2014年9月27日. 於:神奈川県横浜市 E 2. がん抑制遺伝子 p53 機能喪失を伴った新規悪性胃がんモデルマウスの作製と解析子、江澤一星、安部良、大島正伸、大木 理恵子。2015年2月、2015「個体レベルで支援活動」ワークショップ					
	【その他特筆事項】 なし				

平成 26 年度 金沢大学がん准展制御研究所 共同研究報告書

	研究区分	一般共同研究		
	莊			
	· 川 元 [] / [] []	Ganマウスに対しての外科的組織侵襲が胃腫瘍の形成・悪性化 に与える影響の解析		
研究代表者	所属・職名・氏名	慶應義塾大学・助教・後藤修		
受入担当教員	職名・氏名	教授・大島正伸		
【研究目的】	を解明することを目的として ェニックマウス(<i>K19-Wnt1/</i> 織侵襲が新たな胃癌の形成を	を用いた動物実験系において、ヒト胃癌の発生・悪性化の機序、Wnt1、COX-2、mPGES-1を同時に高発現させたトランスジグC2mEマウス: Ganマウス)において、胃壁の切開縫合による組ま誘発するか、また、自然発生した胃癌の悪性度を上昇させうるまた、処置部にきたした組織学的変化の分子メカニズムを解析		
	〈検討1〉切開・縫合による腫 外科的侵襲が、胃腫瘍の悪 の Gan マウス 5 匹に病形成の Gan マウス 5 匹に病形成の 電部の組織を用いて RT-PCR を 過機に犠死で認めた。 15 週後に犠死で認動腫瘍のでいた。また、は 造を呈しなかった。する Ki-6 metaplasia (SPEM)のママーH*/K* ATPase は発現の低瘍に が自然発生腫瘍のと表えられた。 が自然発生腫瘍のとでは、処置部による が自然発生腫瘍のと考えられた。 〈検討2〉切開・縫合による腫 のと考えられた。 〈検討2〉切開・縫合による腫 のとするに対して5 匹に対死されたが、の大きは所もの経過観察を有理といずれも相にないである。 (大きないずれも見に対して15 週の経過観であるといずれも対して15 週の経過間であるといずれも対して15 週の大きないずれも対したが、外科的処理に (上主な論文発表】 他の検討結果を集積した上で 【字会発表】	性化に与える影響を検討するため、 $8-16$ 週齢の Gan マウスに対および扁平上皮-腺上皮移行部 (Squamo-columnar junction: SCJ) にて縫合し閉腹した (胃体部群 6 匹および SCJ 群 5 匹)。また、別間した後、切開・縫合をせず閉腹し control 群とした。その後の有無、粘膜下浸潤の有無などを病理学的に評価した。また、処を行い炎症性サイトカインの発現を解析した。はしたところ、胃体部群の 6 匹中 5 匹 (83%) において処置部に新たり二次性腫瘍は自然発生した腫瘍と組織学的に極めて類似した構は平均 1.1 mm ± 0.5 mm であり、自然発生した SCJ 部の腫瘍と有意を染色において胃癌幹細胞の機能的マーカーの一つである CD44v、 7 、前癌病変としての spasmolytic polypeptide expressingである TFF2 が高発現していた。一方、壁細胞マーカーであるみられた。上記の変化は自然発生腫瘍にも同様に認められた。さにおいては内因性 $COX-2$ および $TNF-\alpha$ 、 mPGES-1, $IL-1$ β の発現していた。腫瘍の明らかな増大傾向はみられなかった。また腫瘍組織の一部、病理学的には悪性度の変化がみられなかったことから、このよっては一般では悪性度の変化がみられなかったことから、このよっては一般では悪性度の変化がみられなかった。とから、このよるものよりも切開・縫合による組織の implantation によるものまりを 5 を 5 を 5 を 5 の別開し縫合した後閉腹した 5 の 5 の 5 の別 5		

	平成 26 年度 金沢大学が	- ん進展制御研究所 共同研究報告書		
	研究区分	一般共同研究		
	研究課題	Gan (Wnt・PGE2 活性化) マウスと c-myc 活性化マウス (FIR+/-)		
		の交配による胃癌悪性化メカニムとバイオマーカー候補の探		
		索		
研究代表者	所属・職名・氏名	千葉大学大学院医学研究院分子病態解析学・准教授・松下一之		
	所属・職名・氏名	千葉大学医学部附属病院・助教・佐藤守		
研究分担者	所属・職名・氏名	千葉大学大学院医学研究院・バイオメディカル研究センター・		
		教授・幡野雅彦		
	所属・職名・氏名	千葉大学大学院医学研究院分子病態解析学・教授・野村文夫		
受入担当教員	職名・氏名	教授・大島正伸		
【研究目的】	学動物センターから輸送)を千配することにより「Gan マウス本研究では FIR+/と Gan マウス再現する新規悪性胃がん病体もしたがんを解析する事により、ク質群(プロテオーム)を同気るとともに、胃がんの悪性化を新しい胃がん治療薬/診断薬のキルス胃癌の早期診断マーカー			
【研究内容・成果】	ス各1匹) が誕生した。今後に 分子の発現など) を詳細に調べ	フスタイピングPCRの結果 s Wnt-1 FIR		

♀ C-217(FIR KO Heteroマウス)と♂ GanA-5(K19-wnt1/C2mEトランスジェニックマウス)を 交配させて、2/22に5匹の子供が生まれました。 タイピング PCRをした結果、K19-wnt1/C2mEトランスジェニック/ FIR KO Heteroマウスが

		COX-2	mPGES-1	Wnt1	FIR KO	
Gan B-508	\$	0	0	0	Hetero	K19-Wnt1/C2mE/FIR KO Hetero
Gan B-509	\$	0	0		Hetero	K19-C2mE/FIR KO Hetero
Gan B-510	∂1			0	Wild	K19-Wnt1
Gan B-511	∂7	0	0	0	Hetero	K19-Wnt1/C2mE/FIR KO Hetero
Gan B-512	o ⁷¹	0	0		Wild	K19-C2mE

【成 果 等】 【主な論文発表】

2匹生まれました。

- 1. Kazami T, Nie H, Satoh M, Kuga T, <u>Matsushita K</u>, Kawasaki N, Tomonaga T and Nomura F. Nuclear accumulation of annexin A2 is involved in chromosomal instability by coilin-mediated centromere damage. **Oncogene**, 2014; 27 October,
- 2. Rahmutulla B, <u>Matsushita K (corresponding author)</u>, Nomura F. Alternative splicing of DNA damage response genes and gastrointestinal cancers. Review. **World J of**Gastroenterology, 2014;20:17305-13
- Gastroenterology. 2014;20:17305-13.
 Tanaka N, Araki K, Mizokami D, Miyagawa Y, Yamashita T, Tomifuji M, Ueda Y, Inoue M, Hasegawa M, Matsushita K, Nomura F, Shimada H, Shiotani A. Sendai virus-mediated c-myc suppressor far-upstream element binding protein interacting repressor gene transfer suppresses head and neck squamous cell carcinoma. Gene

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

Therapy, 2015;22:297-304.

- 4. Mizokami D, Araki K, Tanaka N, Suzuki H, Tomifuji M, Yamashita T, Ueda Y, Shimada H, Matsushita K, Shiotani A. Gene therapy of c-myc suppressor FUSE-binding protein-interacting repressor by Sendai virus delivery prevents tracheal stenosis. **Plos One.** 2015;10:e0116279.
- tracheal stenosis. **Plos One.** 2015;10:e0116279.

 5. <u>Matsushita K, Kitamura K, Rahmutulla B, Tanaka N, Ishige T, Satoh M, Hoshino T, Miyagi S, Mori T, Itoga S, Shimada H, Tomonaga T, Kito M, Nakajima-Takagi Y, Kubo S, Nakaseko C, Hatano M, Miki T, Matsuo M, Fukuyo M, Kaneda A, Iwama A and Nomura F. Haploinsufficiency of the c-myc transcriptional repressor FIR, as a dominant negative-alternative splicing model, promoted p53- dependent T-cell acute lymphoblastic leukemia progression by activating Notch1. **Oncotarget**. 2015;6:5102-17</u>

【学会発表】

1. <u>松下一之</u>、佐藤 守、朝長 毅、野村 文夫。 Interactions between SF3b1(SAP155) and FUSE-binding protein-interacting repressor (FIR) coordinates c-Myc and P27Kip1 expression revealed by GeLC-MS analysis. 第12回JHUPO 2014. (つくば市)。 2014.7.17-18.

【その他特筆事項】

平成 26 年度 金沢大学がん准展制御研究所 共同研究報告書

		ん進展制御研究所 共同研究報告書
研究区分		一般共同研究
研究課題		ニトロソアミン高感受性の CYP2A 遺伝子ノックイン胃発がん
		マウスの作製
研究代表者	所属・職名・氏名	国立がん研究センター 研究所・施設長・今井俊夫
研究分担者	所属・職名・氏名	国立がん研究センター 研究所・ユニット長・戸塚ゆ加里
	所属・職名・氏名	国立がん研究センター 研究所・ユニット長・平岡伸介
受入担当教員	職名・氏名	教授・大島正伸
【研究目的】	我が国のがんの死亡のうち、男性で 40%、女性で 5%は喫煙が原因と考えられているがニトロソアミン類等化学物質が主発がん要因であり、代謝酵素の CYP2A6 の高活性が肺がん、大腸がん及び膵がんのリスクと関連することが示されている。ニトロソアミン類に対する種間の発がん感受性差の原因の詳細は不明であるが、肝マイクロゾームの CYP2A5/2A6 によるクマリン 7-水酸化酵素活性は、マウス、ラットに比しハムスターでは 3 倍以上、ヒトでは更に 10倍近く高活性であることが知られておる。本研究ではニトロソアミン感受性マウス胃がんモデルの作製と関連する基礎データの蓄積を目的とし実施した	
【成 果 等】	倍近く高活性であることが知られておる。本研究ではニトロソアミン感受性マウス胃がんモデルの作製と関連する基礎データの蓄積を目的とし実施した。	
	【学会発表】 なし	
	【その他特筆事項】 なし	

		ぶん進展制御研究所 共同研究報告書 「
研究区分		一般共同研究
	研究課題	2 光子顕微鏡を用いた胃癌におけるマクロファージの可視化
研究代表者	所属・職名・氏名	金沢医科大学 病理学 I・教授・清川悦子
研究分担者	所属・職名・氏名	金沢医科大学 病理学 I・助教・吉崎尚良
りたの色有	所属・職名・氏名	金沢医科大学 病理学 I・助教・武田はるな
受入担当教員	職名・氏名	教授・大島正伸
【研究目的】 【研究内容・成果	的とする。Gan マウスでは、 癌形成促進に重要であること ロファージがどのようにして おける動態や上皮構造、コラ を酵素の活性化と併せて仔細	Gan マウスにおける炎症細胞の動態の試験管内・生体内観察をトマクロファージは自ら産生する TNF-αによって活性化され、「が報告された (Oshima, Oncogene, 2013)。この活性化されたマスで胃上皮細胞の増殖を促すのかはまだわかっていない。胃組織にサインなどの間質の構造に与える影響をマクロファージの動脈に観察することで、マクロファージの役割について考察する。観察するために、2 光子顕微鏡を用いた胃のイメージング法の
	立を試みた。蛍光たんぱく質	gを全身に発現するマウスを用い、生体マウスの胃腺管を漿膜(
		こが、胃では腸に比べて固有筋層が厚く漿膜側からのアプローラ
		: 考えられている峡部を安定して観察することが困難であった。
	Gan マウスでは固有筋層が 	
	a b	の癌では、観察が難しいことも予想 れた。胃内腔を露出させ、対物レン
	A THE STATE OF THE	を固定する手法も試みたが、侵襲性
	Epi	強くマウスを生きたまま維持する
		とが出来なかった。基底膜近くの上
		細胞のタイムラプス撮影も試みたが
		胃は拍動の影響を受けやすく非常
	Epi	困難であった。そこで、比較的観察
	28.57	容易な腸において癌を発症するマ
	a' b'	スを用いた観察に切り替えた。この
	EV 2007 3	デルマウスは TGF-8Ⅱ型受容体を
		上皮で欠損しており、Dextra
		Sodium Sulfate (DSS)投与で慢性
	EGFPラベルされた骨髄由来細胞が 二光子励起顕微鏡で撮影した。(a	
	角で囲んだ細胞の拡大写真が (a	
	Epi:腫瘍上皮と考えられる部分。	Bar;40 μm。表示時間; ていると考えられる。 このマウスに
	mm:ss	GFP トランスジェニックマウスか
	単離した骨髄細胞群を移植し	ン、腫瘍組織における骨髄細胞を可視化し観察した。まず、腫 シ
		きするために、DSS 投与後 2 週間で観察したが、腫瘍形成部位
	特定が困難であったので、腫	瘍形成が進んだ時期に観察することとした。DSS 投与後 10 週
	では、腫瘍が目視で確認でき	るほど大きくなっており、その漿膜側に対物レンズを当てて
	時間のタイムラプスを行うこ	ことができた。その結果、腫瘍組織中の骨髄由来細胞が活発に
	いているのが観察された。重	hいている骨髄由来細胞は、腫瘍上皮の近傍や、腫瘍腺管内腔(
	蓄積した粘液内に多く観察さ	られた。慢性炎症を伴う消化管の腫瘍組織内で、骨髄細胞の動
		この結果は新しい知見である。今後は、この動いている細胞種の
		ージのみを蛍光標識することを試み、腫瘍内での動きを観察
V . N. H. 44 ¥		ように寄与しているかその機構を探る予定である。
【成 果 等】	【主な論文発表】 なし	
	() () () () () () () () () ()	

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

【学会発表】

Haruna Takeda, Hisayoshi Yoshizaki, Hiroko Oshima, Masanobu Oshima and Etsuko Kiyokawa

In vivo imaging using a two-photon microscope in the mouse intestine 日本癌学会シンポジウム/共同利用・共同研究拠点シンポジウム 2015 年 1 月 21-22 日 金沢県立音楽堂交流ホール 金沢

【その他特筆事項】

平成26年度 金沢大学がん准展制御研究所 共同研究報告書

	平成 26 年度 金沢大学が	A.進展制御研究所 共同研究報告書
	研究区分	一般共同研究
	研究課題	がん幹細胞特異的代謝フラックスの解明
研究代表者	所属・職名・氏名	大阪大学・教授・清水浩
研究分担者	所属・職名・氏名	大阪大学・准教授・松田史生
	所属・職名・氏名	大阪大学・博士後期課程学生・岡橋伸幸
受入担当教員	職名・氏名	教授・髙橋智聡
【研究目的】	診断・治療技術が格段に進歩した今日においてもがん死が減少しないのは、がんの再発・転移や薬剤抵抗性の制御が十分に実現されていないためである。最近、このようながん悪性形質の獲得機序とがん細胞が獲得し得る「未分化性」、すなわち、がん幹細胞の関連が注目されている。本研究では、培養細胞に適用可能な ¹³ C 代謝フラックス解析法を開発し、がん細胞において、解糖系、TCA 回路、ペントースリン酸(PPP)経路、グルタミン経路などの中心炭素代謝の動態を明らかにし、がん細胞の代謝経路の流れが様々なコンテクストにおいてどのように変化するかを解明することを目的とした。	
【研究内容・成果】	平成 26 年度は、従来、微生物培養の代謝フラックス解析に適用されてきた手法を培養細胞に展開するために解析系のフィッティングを行った。マウスの解糖経路、ペントースリン酸経路、TCA サイクル、グルタミン代謝経路を含む炭素中心代謝において、化学反応の原子マッピングや量論に関する情報を収集し、13C 標識濃縮度から代謝フラックスを定量的に解析することを可能とする代謝モデルを構築した。また、13C 標識グルコースやグルタミンを細胞に取り込ませた後、細胞代謝をクエンチして代謝物質を抽出する方法、各代謝物質の濃度プロファイルおよび、13C 標識濃縮度を GC-MS、LC-MS/MS で測定する方法などを細胞培養に適用するための検討を行った。培地中からのグルコース、グルタミンをはじめとするアミノ酸の取り込みおよび排出、乳酸の排出などを観測する方法も確立した。モデル構築と代謝解析には我々が独自に開発したソフトウェアOpenMebiusを用いた。 高橋らが作成した p53 ノックアウトマウス軟部腫瘍由来細胞株細胞の代謝フラックスを解析するために上記の方法の適用可能性を検証し、解析可能であることが確認された。 13C 標識グルコースや 13C 標識グルタミンを用いた培養結果から、炭素中心代謝のフラックスを解析し、代謝物中の 13C 標識機縮度および OpenMebius によるシミュレーション結果より、取り込まれたグルコースの大部分が乳酸へ流れていることが明らかとなり、また、グルタミンの還元的代謝の存在が強く示唆された。	
【成 果 等】	【主な論文発表】 S. Kajihata, C. Furusawa, F. Matsuda, H. Shimizu, OpenMebius: An open source softward for isotopically nonstationary ¹³ C-based metabolic flux analysis, <i>BioMed Research International</i> , Article Number 627014 (2014) 【学会発表】 松田史生、岡橋伸幸、梶畠秀一、清水 浩、 ¹³ C 代謝フラックス解析ソフトウェア OpenMebius の開発、第 2 回がんと代謝研究会、東京理科大学(東京)、7 月 10 日-11 日 (2014) (ポスター賞銅賞受賞) 他、国内学会 4 件、国際学会 1 件の発表を行った。	

	研究区分	一般共同研究
	研究課題	Rb1 の関与する発ガンにおける p107 と IRSp53 の役割
研究代表者	所属・職名・氏名	奈良先端科学技術大学院大学・教授・末次志郎
受入担当教員	職名・氏名	教授・高橋智聡
【研究目的】	職名・氏名 教授・高橋智聡 がん細胞は、多くの場合親株となる細胞とは異なり形態を呈することで認識される。がん細胞は悪性化すると高増殖能と浸潤能を獲得し、その際にがん細胞は、多数の突起構造を獲得する場合が多いと考えられる。細胞突起を形成する I-BAR ドメイン含有タンパク質である IRSp53 はがん細胞、その中でも特に網膜繊維芽種 (retinoblastoma) において高発現することが認められるがその意義は明らかではない。I-BAR ドメインは、脂質膜に結合する以外に病原性細菌の持つタンパク質の NPY モチーフと結合する。NPY モチーフを持つタンパク質は、がん抑制遺伝子 (Rb1) のファミリーメンバーである p107 が含まれる。従って、IRSp53 は Rb ファミリータンパク質と結合することで細胞周期の調節を行っている可能性も考えられる。本研究では、IRSp53 のがん細胞における突起形成における役割を検討する。IRSp53 のノックアウトマウスと、高頻度のがん発症により短命化するがん抑制遺伝子 p53 および Rb1 のノックアウトマウスを掛け合わせる事により、IRSp53 の減少により、がん抑制遺伝子欠損によるがん発症のための短命化がどのようになるのか、生存曲線解析を行った。IRSp53 のヘテロ接合型ノックアウトマウス (+/-) は、野生型マウスの半分の IRSp53 タンパク質をもつ。IRSp53 遺伝子の欠損による IRSp53 タンパク質の減少により、p53 ホモ接合型 (-/-)ノックアウトマウスの平均寿命が延びる事がわかった。しかし、形成されるがんの種類に顕著な違いは見られなかった。Rb1 ヘテロ接合型(+/-)に比べて IRSp53 と Rb1 の両方の遺伝子をヘテロ接合型(+/-)に持つマウスは平均寿命が延びることがわかった。また驚くべき事に、Rb1(+/-)マウスの多くが脳腫瘍を発症するが、IRSp53(+/-); Rb1(+/-)マウスの脳組織ではがん細胞は認められず、すべて正常であった。従って IRSp53 の減少は Rb1 欠損により引き起こされる脳腫瘍を抑える事が示唆された。現在このような違いが、どのような原因によっているのか、培養細胞を用いて増殖と浸潤の解析を行うとともに、がん組織などでの血管新生の状態を調べる予定である。また、p107 についても引き続き検討する予定である。	
【成果等】	¹ 奈良先端科学技術大学院大学 遺伝子分野、 ³ 金沢大学がん進	i ² 、北嶋俊輔 ³ 、高橋智聡 ³ 、末次志郎 ¹ ジバイオサイエンス研究科、 ² 東京大学医科学研究所人癌病因 展制御研究所腫瘍分子生物学研究分野 司利用・共同研究拠点シンポジウム がん幹細胞・微小環境・ Ľ戦

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

	研究区分	一般共同研究
	研究課題	Rb ファミリー遺伝子を欠損した神経細胞におけるがん特異的
	MI JUHANA	代謝異常経路の解析
研究代表者	所属・職名・氏名	東京医科歯科大学・准教授・味岡逸樹
受入担当教員	職名・氏名	教授・高橋智聡
【研究目的】	担い、細胞増殖のブレーキと 周期を進めるが、その後、細 脈特異的」(context-specific) せるとニューロンが増殖し、 細胞死を起こすことを見いだ	アミリー遺伝子(p107, p130)は細胞周期制御の中心的な役割をして機能する。Rb ファミリーを急性的に欠損させた細胞は細胞間胞分裂する場合と細胞死を起こす場合があり、その運命は「文である。最近我々は、神経前駆細胞で Rb ファミリーを欠損さ一度分化を開始したニューロンで Rb ファミリーを欠損させるとした。本研究では、「文脈特異性」とがん特異的代謝異常経路の終的なゴールとして設定し、「文脈特異性」と N-Ras 活性化とのな目的とした。
【研究内容・成果】	に N-Ras を活性化するためのコドンの後に loxP-stop-lox N-RasV12 cDNA を挿入してドを用いて、ニューロン特異ために、マウス胎生 14 日目pMAP2-Creと pCALNL-NR培養して免疫組織染色を行っ発は N-RasV12 の発現が認めらされており、N-RasV12 の発現が認めらこユーロン特異的に N-Ras があらいとなった。また、いったが明らかとなった。また、いったと考えられてガリー大損マウスや、p53-Rb	型 N-Ras(N-RasV12)の cDNA を入手し、ニューロン特異的のプラスミドを作製した。具体的には、CAG プロモーターと開始P 配列を持つプラスミド pCALNL を材料とし、その下流にて、pCALNL-NRasV12を作製した。続いて、作製したプラスミ語的に N-Ras を活性化するシステムが作動するかどうか検討するの大脳組織に、ニューロン特異的に Cre を発現するプラスミド asV12をエレクトロポレーション法で遺伝子導入し、4日間組織で、なお、N-RasV12には HA タグをコードする cDNA が挿入意現を HA 抗体にて検討した。その解析の結果、神経前駆細胞であれず、ニューロンでのみ発現が認められたことから、期待通り、び活性化することが示唆された。さらに、N-Ras の役割を検討すた結果、N-RasV12発現ニューロンは S 期へと進行しているこ S 期へと細胞周期を進めたニューロンは分裂せず、細胞死を起こ度分化を開始したニューロンは、細胞周期から離脱して G0 期に見の結果から、N-Ras の活性化によって、ニューロンの細胞周期が解除されるという新しい知見が示唆された。今後は、Rb ファミファミリー欠損マウス等を用いて、ニューロンにおける N-Ras は構について検討する予定である
【成 果 等】	【主な論文発表】なし 【学会発表】なし 【その他特筆事項】	

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

平成 26 年度 金沢大学が研究区分		ん進展前仰妍先別 共同妍先報音書 一般共同研究
研究課題		一板共同研先がん抑制遺伝子と概日リズムの関連に関する研究
TT か / L 士 本	所属・職名・氏名	京都大学・特定助教・三木貴雄
研究代表者	所属・職名・氏名	京都大学・教授・野田亮
研究分担者		
受入担当教員	職名・氏名	教授・高橋智聡
【研究目的】	概日リズムは、日々の睡眠サイ	イクルや代謝等、生体の一日約24時間のリズムを制御している生物の
	基本的な機構である。長期的な	リズムの欠失は、がんや糖尿病等の疾患と関連することが疫学研究にお
	いて報告されている。一方、がん	ん患者では、睡眠リズム障害が見られることや、糖尿病患者では、イン
	スリン代謝リズム障害等が見ら;	れ、がんの罹患率も高いことが報告されている。上記の知見は、がんと
	概日リズムには、緊密な関連性な	ぶあることを示唆しているが、詳細な機構は不明である。 そこで我々は、
	がんと概日リズムの関連を、がん	抑制遺伝子による概日リズムの分子レベルでの制御という視点から解
	明しようと試みている。	
【研究内容・成果】	pRb の概日リズムにおける役割	削を in vivo で検討するために、成体マウスの脳視交叉上核において、
	pRb を欠損するマウスの作製を診	式みた。pRb 欠損マウスは胎生致死のため、視交叉上核において、多く存
	在すると報告されている GABA 作	動性神経において特異的に pRb を欠損する Vgat-Cre; Rbflox/flox マウ
	スを作製した。しかし、このマウスは生後まもなく死亡してしまい、概日リズムの解析には不向きであ	
	った。そこで次に、タモキシフェン依存的 ubiquitine C-Cre プロモーターによる成体での pRb 欠損マウ	
	スの作製を行い、解析を行った。	しかしながら、タモキシフェン投与依存的な Cre の活性化は、視交叉
	上核では軽微なものに留まり	、pRb を完全に欠損することは出来なかった。そのため現在は
	Albumin-Cre; Rbflox/flox マウ	スを用いて、肝臓特異的に pRb を欠損させ、pRb による概日リズム遺伝
	子への影響を検討するため、マ	ウスの交配に取り掛かっている。
	また、pRb による概日リズム制御機構の解析のため、培養細胞(野生型マウス胎児線維芽細胞)を用	
	いて pRb を発現させ、Per2 プロモーターへの影響を検討した。その結果、pRb の存在下で約20%の Per	
	2プロモーター活性の上昇が見られたため、そのメカニズムの解析を試みた。pRb の主要なパートナー	
	である E2F や、PML は、pRb の細胞周期制御の機能に非常に重要である。そのためこれらの蛋白質	
	細胞に発現させ、Per2プロモー	ター活性を測定した。しかし、Per2プロモーター活性に関して、pRbと
	の関連を示唆するデータは得られ	れなかった。
	実験が当初の計画どおりに進まなかったため、代替案として pRb を発現させた時の他の概日リズム	
	伝子の発現量を qPCR 法により定量した結果、転写抑制因子の発現が減少していることにより、Per2	
	ロモーター活性が上昇しているのではないかという知見が得られた。今後はこの得られた知見を、	
	プロモーター解析等と組合せ、詳細に解明していく予定である。	
【成 果 等】	【主な論文発表】なし	
	【学会発表】 三木貴雄 「がん抑制遺伝子 p53 待講演)2015 年 3 月 21-23 日	3、PML と概日リズムの関連」日本解剖学会、日本生理学会合同大会(招 神戸国際会議場
	【その他特筆事項】なし	

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

	,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	研究区分	一般共同研究
	研究課題	ヒトがん細胞を用いた Akt/MMP-9 阻害性抗転移剤の開発
研究代表者	所属・職名・氏名	徳島大学・教授・宇都義浩
THE STATE OF THE S	所属・職名・氏名	徳島大学・D1・多田竜
研究分担者	所属・職名・氏名	徳島大学・M2・芝一休
	所属・職名・氏名	徳島大学・M2・玉谷大
受入担当教員	職名・氏名	教授・佐藤博、准教授・遠藤良夫
【研究目的】	互作用の上で成り立っており 点から、がん転移を抑制でき 年度の共同研究において、低 生の抑制を介して抗転移活性 て新たに分子設計・合成した。 た、そこで、平成 26 年度は、	,血管や結合組織,免疫担当細胞といったがん周囲組織との相,治療戦略としてがんの縮小ではなく再発期間の延長という観る血管新生阻害剤は最適な制癌剤であると思われる.平成 $23-25$.酸素サイトトキシン誘導体 $TX-2137$ は, Akt および $MMP-9$ 産 を示すことを明らかにした.また, $TX-2137$ をリード分子とし $TX-2282$ が $TX-2137$ よりも強い抗転移活性を有することを示し, $TX-2137$ および $TX-2282$ をリードとして中性子捕捉による抗的とした抗転移剤の開発を試みる.
【研究内容・成果】	これまでに TX-2137 のフラー 合成し in vitro 抗腫瘍活性、評価したが有意な結果は得ら酸素細胞毒性を MCF-7 細胞粉質を発件で常酸素条件よりも数り、たって薬理活性が取り、たって薬理活性が取り、たったに対合物1は検出限界以下で、大きなが1は MIDA 保護体を保持するために TX-2137子設計した。その結果としては MIDA 保護体を合成に TX-2137子設計した。その結果としては MIDA 保護体を合成に TX-2137子設計した。その結果と中で3-chrolo-1,2,4-benなに TX-2137ボロロ基に置換されたた現在のところ3-Chloro-1,2,4-benなよび TX-2137ボロンとう場話性、MMP-9 阻害活性、発情活性を評価する予定である	エノール基をフェニルボロン酸に置換した化合物 1 を分子設計・MMP-9 阻害活性および発育鶏卵を用いた in vivo 抗転移活性をれなかった。今年度は、TX-2137 および化合物 1 の in vitro 低多よび MDA-MB-231 細胞を用いて評価した結果、TX-2137 は低酸素高い抗腫瘍活性を示したが化合物 1 はほとんど抗腫瘍活性を示化合物 1 はボロン酸基の高い水溶性により細胞内取込が低下した推察した。そこで、TX-2137 および化合物 1 を用いて MCF-7 細ご評価したところ、TX-2137 は細胞内に取り込まれていたのに対であった。よって、化合物 1 の疎水性を向上させる必要性が示さに向上を目的としてフェニルボロン酸のヒドロキシル基をフッと合物を新たに分子設計した。さらに in vivo 試験に必要な水溶と合物を新たに分子設計した。さらに in vivo 試験に必要な水溶とのベンゾトリアジン骨格にフェノール基を付加した化合物を分である。また、チラパザミンにフェノール基を付加した。カールをである。また、チラパザミンにフェノールを付加した。カース・フェノール基を TBDMS 保護した誘導体の合成を試みており、4-benzotriazine-7-ol-1-oxide TBDMS 保護体を用いて TX-2137 誘導に誘導体の合成及び MIDA 保護体の合成を完了させ、in vitro 抗腫育鶏卵を用いた in vivo 抗転移活性および中性子併用による抗腫
【成 果 等】	【主な論文発表】 ・ <u>Uto Y</u> , <u>Tamatani D</u> , Mizuk: Tanaka T, Kuchiike D, Kub activities of 5-aminolevul embryos. Anticancer Res., 【学会発表】 ・芝 一休, 遠藤良夫, 佐藤	i Y, <u>Endo Y</u> , Nakanishi I, Ohkubo K, Fukuzumi S, Ishizuka M, oo K, Inui T, Hori H. Evaluation of the sonosensitizing linic acid and Sn(IV) chlorin e6 in tumor-bearing chick

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

	研究区分	一般共同研究
研究課題		がん組織における MT1-MMP の新規機能の解析
研究代表者	所属・職名・氏名	東京大学医科学研究所・助教・坂本毅治
受入担当教員	職名・氏名	教授・佐藤博
【研究目的】	我々はこれまでに膜型プロテアーゼである MT1-MMP の新規機能として、プロテアーゼ活性に依存しない MT1-MMP/Mint3 による HIF-1 活性化機構の解析を行ってきたが、これらのメカニズムが生体、特にがん組織においてどのように機能しているかは不明である。また、その制御機構も不明な点が多い。そこで本研究では、マウスを用いた in vivoの表現型解析や細胞機能・生化学的解析により、がん組織における MT1-MMP の新規機能の役割と制御機構の解明を目指す。	
【研究内容・成果】	MTI-MMP/Mint3による HIF-1 の活性化には mTOR シグナルが重要な役割を果たしていることを報告しているが(Sakamoto et al., MCB, 2014)、他にどのような分子、シグナルにより制御されるかについては不明である。H26 年度の共同研究において、酵母ツーハイブリッド法を用いて Mint3 結合分子を探索した結果、分子 X を同定した。この分子 X はMTI-MMP/Mint3 依存的にとト線維肉腫細胞株 HT1080 細胞の HIF-1 標的遺伝子の発現および通常酸素下での解糖系を亢進させていることが明らかとなった。また、分子 X のノックダウンにより、Mint3 と FIH-1 との結合が減弱する一方、MT1-MMP による MMP-2 活性化には影響を与えないことが明らかとなった。 2. がん間質細胞における MT1-MMP/Mint3 の役割の解明 H26 年度では、線維芽細胞(胚を)との共移植において、Mint3 欠損 MEF は野生型 MEF に比べ腫瘍増殖促進活性が低下していることが明らかとなった。また、in vitro の共培養実験においても Mint3 欠損 MEF は癌細胞の増殖促進能が低下していることが明らかとなった。 3. 発がんモデルマウスを用いた MT1-MMP/Mint3 の役割の解明 MT1-MMP 欠損マウスは生後 14 日ほどで死亡するため、Mint3 欠損マウスを用いて MT1-MMP/Mint3による HIF-1 活性化機構の発がんモデルでの役割の解析に着手した。H26 年度では、膵癌モデルマウス、乳癌モデルマウスと Mint3 欠損マウスとの掛け合わせを行った。	
【成 果 等】	【主な論文発表】 なし 【学会発表】	
	【その他特筆事項】 なし	

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

研究に対する高特異性阻害剤の分子設計とがん悪性進展 抑制法の開発 研究代表者 所属・職名・氏名 横浜市立大学・准教授・東昌市 受入担当教員 職名・氏名 教授・佐藤博 【研究 目的】 悪性がんの組織内で高発現しているマトリックスメタロプロテアーゼ (MMPs) は、がん細胞の浸潤性増殖および転移を支えることから、がん治療の有望な標的分子である。しかし、従来型 MMP 阻害剤は特異性が低く、臨床試験の過程で様々な創作用を示したため、それらを抗がん剤として開発することに成功していない。そこで本共同研究では、個々の MMP の酵素活性あるいはそれらの一機能を特異的に阻害するインヒビターを創出することにより、副作用の極めて少ないがん治療薬の開発へ繋げることを目的とした。 昨年度に引き続き、β-アミロイド前駆体タンパク質 (APP) に由来する 10 残基ペプチドインヒビター (APP-IP であ名) が高い MMP-2 選択性を持つこと、および MMP-2 選択性に関与する APP-IP のアミノ酸残基がこれまでの研究で明らかになっていることを利用して、APP-IP を変し、他の MMPs 対して選択性を関づるアミノ酸残基を一つずつ 20 種のアミノ酸交し、他の MMPs 対して選択性を関づるアミノ酸残基を一つずつ 20 種のアミノ酸を制羅するようにランダム変異を導入し、標的 MMP との特異性性獲得を指標に選別を行った。 選別方法は、APP-IP 改変体を GST 融合タンパク質として菌体内に発現さており、反対に MMP-2 との緩和性が顕著に低下する APP-IP 改変体が得られた。その結果、MMP-9 と MMP-7 のそれぞれに対する親和性が高まり、反対に MMP-2 との緩和性が顕著に低下する APP-IP 改変体が得られた。その結果、MMP-9 と MMP-7 のそれを類似しており、選択性を顕常のあることに根難であったが、MMP-2 に対する観音選択性を高めたペプチドはこれをいくつかの MMP-9 結合性クシパク質と組み合わせることにより 不の阻害性と MMP-9 選択性を 機趣的に高めることに成功した。 上次 が (4) 利用 MMP-1 であることに成功した。 上次 が (4) 利用 MMP-1 で表のさことにより であるに、それらの転移能を顕著に上身させることを見出してきたが、MMP-7 によって切断される膜タンパク質は来同定であった。今回、が (4) 和配の表層タンパク質を出すていることを MMP-7 が結合すると、近傍にある腹タンパク質である IMI-1 (hepatocyte growth factor activator inhibitor type 1) が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
研究代表者 所属・職名・氏名 横浜市立大学・准教授・東昌市 要入担当教員 職名・氏名 教授・佐藤博 悪性がんの組織内で高発現しているマトリックスメタロプロテアーゼ(MMPs)は、がん細胞の浸潤性増殖および転移を支えることから、がん治療の有望な標的分子である。しかし、従来型 MMP 阻害剤は特異性が低く、臨床試験の過程で様々な副作用を示したため、それらを抗がん剤として開発することに成功していない。そこで本共同研究では、個々の MMP の酵素活性あるいはそれらの一機能を特異的に阻害するインヒビターを創出することにより、副作用の極めて少ないがん治療薬の開発へ繋げることを目的とした。 昨年度に引き続き、βーアミロイド前駆体タンハク質(APP)に由来する10 残基ペプチドインヒビター(APP・IP と命名)が高い MMP・2 選択性を持つこと、および MMP・2 選択性に関与する APP・IP のアミノ酸残基がこれまでの研究で明らかになっていることを利用して、APP・IP を変し、他の MMPs 対して選択性を持つペプチドインヒビターを開発することを試みた。 APP・IP の改変方法としては、選択性に関与するアミノ酸残基を一つずつ20種のアミノ酸を網羅するようにランダム変異を導入し、標的 MMP・2 や物共性性護得を指標に適別を行った。適別方法は、APP・IP 改変体を GST 融合タンパク質として菌体内に変視させ、各クローンの溶解物について標的 MMP および MMP・2 をリガンドとしたリガンドブロッティング法により親和性を調べる方法を用いた。その結果、MMP・9 と MMP・7 のそれぞ親にしており、選択性を顕著に高めることは困難であったが、MMP・2 をリガンドとしたリガンドブロッティング法により親和性が高い APP・IP 改変体が得られた。また、MMP・9 と MMP・7 のそれと類似しており、選択性を顕著に高めることは関難であったが、MMP・2 に対する観和性より MT1・MMP に対する親和性が高い APP・IP 改変体が得られた。また、MMP・9 に対する観和性が高い APP・IP 改変体が現られた。また、MMP・9 に対する観れ性が高い APP・IP 改変体が現られた。また、MMP・9 に対する観れ性が高い APP・IP 改変体が現られた。また、MMP・9 に対する観れ性が高い APP・IP 改変体が現られた。また、MMP・7 に対する観れ性が高い APP・IP 改変体が現られた。また、MMP・7 に対する観れ性があた。 一方、私達は、がん細胞皮層のコレステロール硫酸に MMP・7 が結合すると、近傍にある膜をリがし、新ん細胞皮層のコレステロール硫酸に MMP・7 が結合すると、近傍にある膜をリバク質を切りに、おん細胞の表層タンパク質を制度を対するととにより 出されてくるビオチン標識 した後、MMP・7 がは合い、培養液中に切り出されてくるビオチン標識 した後、MMP・7 に関係で行うことにより間定したところ、1 型膜タンパク質をある HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP・7 に関係されていまなでは、特定では、対域を対する MMP・7 に関係で行うことを明めに関係といるでは、MMP・7 に関係で行うに対していまなどが、MMP・7 に関係で行うこととないまなどが、MMP・7 に関係で行うに対していまなどが、MMP・7 を関係で行り、MMP・7 を関係で行り、MMP・
研究代表者 一一一一の
要入担当教員 職名・氏名 教授・佐藤博 悪性がんの組織内で高発現しているマトリックスメタロプロテアーゼ(MMPs)は、がん細胞の浸潤性増殖および転移を支えることから、がん治療の有望な標的分子である。しかし、従来型 MMP 阻害剤は特異性が低く、臨床試験の過程で様々な副作用を示したため、それらを抗がん剤として開発することに成功していない。そこで本共同研究では、個々の MMP の酵素活性あるいはそれらの一機能を特異的に阻害するインヒビターを創出することにより、副作用の極めて少ないがん治療薬の開発へ繋げることを目的とした。 「研究内容・成果」 昨年度に引き続き、β-アミロイド前駆体タンパク質(APP)に由来する10 残基ペプチドインヒビター(APP-IP と命名)が高い MMP-2 選択性を持つこと、および MMP-2 選択性に関与する APP-IP のでミノ酸残基がこれまでの研究で明らかになっていることを利用して、APP-IP を変し、他の MMP 対して選択性を持つペプチドインヒビターを開発することを試みた。 APP-IP のでミノ酸残基がこれまでの研究で明らかになっていることを利用して、APP-IP を変し、他の MMP おして選択性を持つペプチドインヒビターを開発することを試みた。 APP-IP の改変方法としては、選択性に関与するアミノ酸残基を一つずつ 20 種のアミノ酸を網羅するようにランダム変異を導入し、標的 MMP との特異性性獲得を指標に選別を行った。 選別方法は、APP-IP 改変体を GST 融合タンパク質として歯体内に発理させ、各クローンの溶解物について標的 MMP および MMP-2 をリガンドブロッティング法により親和性を調べる方法を用いた。その結果、MMP-9 と MMP-7 のそれぞれに対する親和性が高まり、反対に MMP-2 との親和性が顕著に低下する APP-IP 改変体が得られた。一方、MT1-MMP は各種APP-IP 改変体が対る親和性が高いる方法を用いた。その親和性が高い APP-IP 改変体が対る観和性スペクトラムが MMP-2 のそれと類似しており、選択性を顕著に高めることは対する観れでより、MMP-9 に対する限ま選択性を高めたペプチドはこれを顕著に高めることは対した。 一方、私達は、がん細胞を層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜タンパク質を切断し、がん細胞の素層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜タンパク質を切断し、がん細胞の素層タンパク質をどピオーシに識した後、MMP-7 処理を行い、培養液中に切り出されてくるビオナン標識タンパク質的ありは1-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
展性がんの組織内で高発現しているマトリックスメタロプロテアーゼ (MMPs) は、がん細胞の浸潤性増殖および転移を支えることから、がん治療の有望な標的分子である。しかし、従来型 MMP 阻害剤は特異性が低く、臨床試験の過程で様々な副作用を示したため、それらを抗がん剤として開発することに成功していない。そこで本共同研究では、個々の MMP の酵素活性あるいはそれらの一機能を特異的に阻害するインヒビターを創出することにより、副作用の極めて少ないがん治療薬の開発へ繋げることを目的とした。 昨年度に引き続き、β-アミロイド前駆体タンパク質 (APP) に由来する10 残基ペプチドインヒビター (APP-IP と命名)が高い MMP-2 選択性を持つこと、および MMP-2 選択性に関与する APP-IP のアミノ酸残基がこれまでの研究で明らかになっていることを試みた。 APP-IP の改変方法としては、選択性に関与するアミノ酸残基を一つずつ 20 種のアミノ酸を網羅するようにランダム変異を導入し、標的 MMP との特異性性獲得を指標に選別を行った。選別方法は、APP-IP 改変体を引入としては、選択性に関与するアミノ酸残基を一つずつ 20 種のアミノ酸を網羅するようにランダム変異を導入し、標的 MMP との特異性性獲得を指標に選別を行った。選別方法は、APP-IP 改変体を7の介質として遺体内に変けせ、各クローンの溶解物について標的 MMP および MMP-2 をリガンドとしたリガンドブロッティング法により親和性を調べる方法を用いた。その結果、MMP-9 と MMP-7 のそれぞれに対する親和性が高まり、反対に MMP-2 との親和性が顕著に低下する APP-IP 改変体が得られた。一方、MTI-MMP は各種APP-IP 改変体に対する親和性が顕著に低下する APP-IP 改変体が得られた。一方、MTI-MMP は各種APP-IP 改変体が得られた。また、MMP-9 に対する観音といの観音活性と MMP-9 選択性を預めることは成功した。 一方、私達は、がん細胞表層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜タンパク質を切断し、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上昇させることを見出してきたが、MMP-7 によって切断される膜タンパク質を切断し、がん細胞の表層タンパク質をピオチン標識した後、MMP-7 処理を行い、培養液中に切り出されてくるビオチン標識タンパク質時片をトリプシン消化一質量分析を行うことにより同定したところ、I 型膜タンパク質が肩とマーマのWHP-7 に対していな行がよりでは対所で行りによりがMMP-7 に関節されることを明らかにした。また、切り出された HAI-1 細胞外領域に
胞の浸潤性増殖および転移を支えることから、がん治療の有望な標的分子である。しかし、 従来型 MMP 阻害剤は特異性が低く、臨床試験の過程で様々な副作用を示したため、それらを 抗がん剤として開発することに成功していない。そこで本共同研究では、個々の MMP の酵素 活性あるいはそれらの一機能を特異的に阻害するインヒビターを創出することにより、副作 用の極めで少ないがん治療薬の開発へ繋げることを目的とした。 昨年度に引き続き、β-アミロイド前駆体タンパク質 (APP) に由来する 10 残基ペプチドイ ンヒビター (APP-IP と命名) が高い MMP-2 選択性を持つこと、および MMP-2 選択性に関与する APP-IP のアミノ酸残基がこれまでの研究で明らかになっていることを利用して、APP-IP を 改変し、他の MMPs 対して選択性を持つペプチドインヒビターを開発することを試みた。 APP-IP の改変方法としては、選択性に関与するアミノ酸残基を一つずつ 20 種のアミノ酸を 網羅するようにランダム変異を導入し、標的 MMP との特異性性獲得を指標に選別を行った。 選別方法は、APP-IP 改変体を GST 融合タンパク質として菌体内に発現させ、各クローンの溶解物について標的 MMP および MMP-2 をリガンドとしたリガンドブロッティング法により親和 性を調べる方法を用いた。その結果、MMP-9 と MMP-7 のそれぞれに対する親和性が高まり、反対に MMP-2 との親和性が顕著に低下する APP-IP 改変体が得られた。一方、MTI-MMP は各種 APP-IP 改変体に対する親和性スペクトラムが MMP-2 のぞれと類似しており、選択性を顕著に 高めることは困難であったが、MMP-2 に対する観れ性より MTI-MMP に対する親和性が高い APP-IP 改変体が得られた。また、MMP-9 に対する阻害選択性を高めたペプチドはこれをいく つかの MMP-9 結合性タンパク質と組み合わせることにより、その阻害活性と MMP-9 選択性を 飛躍的に高めることに成功した。 一方、私達は、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上 昇させることを見出してきたが、MMP-7 によって切断される膜タンパク質を切断し、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り 出されてくるビオチン標識タンパク質が片をトリプシン消化一質量分析を行うことにより同 定したところ、I 型膜タンパク質断片をトリプシン消化一質量分析を行うことにより同 定したところ、I 型膜タンパク質断片をトリプシン消化一質量分析を行うことにより同 定したところ、I 型膜タンパク質が片をトリプシン消化で質量分析を行うことにより同 定したところ、I 型膜タンパク質断片をトリプシン消化で質量分析を行うことにより同
従来型 MMP 阻害剤は特異性が低く、臨床試験の過程で様々な副作用を示したため、それらを 抗がん剤として開発することに成功していない。そこで本共同研究では、個々の MMP の酵素 活性あるいはそれらの一機能を特異的に阻害するインヒビターを創出することにより、副作 用の極めて少ないがん治療薬の開発へ繋げることを目的とした。 「昨年度に引き続き、β-アミロイド前駆体タンパク質 (APP) に由来する 10 残基ペプチドイ ンヒビター (APP-IP と命名) が高い MMP-2 選択性を持つこと、および MMP-2 選択性に関与する APP-IP のアミノ酸残基がこれまでの研究で明らかになっていることを利用して、APP-IP を 改変し、他の MMPs 対して選択性を持つペプチドインヒビターを開発することを試みた。 APP-IP の改変方法としては、選択性に関与するアミノ酸残基を一つずつ 20 種のアミノ酸を 網羅するようにランダム変異を導入し、標的 MMP との特異性性獲得を指標に選別を行った。 選別方法は、APP-IP 改変体を GST 融合タンパク質として菌体内に発現させ、各クローンの溶 解物について標的 MMP および MMP-2 をリガンドとしたリガンドブロッティング法により親和 性を調べる方法を用いた。その結果、MMP-9 と MMP-7 のそれぞれに対する親和性が高まり、反 対に MMP-2 との親和性が顕著に低下する APP-IP 改変体が得られた。一方、MTI-MMP は各種 APP-IP 改変体が得られた。また、MMP-9 に対する親和性より、例理はを顕著に 高めることは困難であったが、MMP-2 に対する親和性より、その阻害活性と MMP-9 選択性を 飛躍的に高めることに成功した。 一方、私達は、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上 昇きせることを見出してきたが、MMP-7 によって切断される膜タンパク質を固断し、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上 昇きせることを見出してきたが、MMP-7 によって切断される膜タンパク質と記すシレッパク質と記すシレッパク質と記するとい。 今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り 出されてくるビオチン標識タンパク質のをビオチン標識した後、MMP-7 処理を行い、培養液中に切り 出されてくるビオチン標識タンパク質がよるにより消化・例2・対理の表によりによりによりによりによりによりによりにある 定したところ、I型膜タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断 MMP-7 に対 MMP-7 MMP
抗がん剤として開発することに成功していない。そこで本共同研究では、個々の MMP の酵素活性あるいはそれらの一機能を特異的に阻害するインヒビターを創出することにより、副作用の極めて少ないがん治療薬の開発へ繋げることを目的とした。 「昨年度に引き続き、β-アミロイド前駆体タンパク質(APP)に由来する 10 残基ペプチドインヒビター (APP-IP と命名)が高い MMP-2 選択性を持つこと、および MMP-2 選択性に関与する APP-IP のアミノ酸残基がよれまでの研究で明らかになっていることを利用して、APP-IP を改変し、他の MMPs 対して選択性を持つペプチドインヒビターを開発することを試みた。 APP-IP の改変方法としては、選択性に関与するアミノ酸残基を一つずつ 20 種のアミノ酸を網羅するようにランダム変異を導入し、標的 MMP との特異性性獲得を指標に選別を行った。選別方法は、APP-IP 改変体を GST 融合タンパク質として関体内に発現させ、各クローンの溶解がについて標的 MMP および MMP-2 をリガンドとしたリガンドブロッティング法により親和性を調べる方法を用いた。その結果、MMP-9 と MMP-1 のそれぞれに対する親和性が高まり、反対に MMP-2 との親和性が顕著に低下する APP-IP 改変体が得られた。一方、MT1-MMP は各種APP-IP 改変体に対する親和性スペクトラムが MMP-2 のそれと類似しており、選択性を顕著に高めることは困難であったが、MMP-2 に対する親和性より MT1-MMP に対する親和性が高い APP-IP 改変体が得られた。また、MMP-9 に対する祖告選択性を高めたペプチドはこれをいくつかの MMP-9 結合性タンパク質と組み合わせることにより、その阻害活性と MMP-9 選択性を飛躍的に高めることに成功した。 一方、私達は、がん細胞表層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜タンパク質を切めていた。それらの転移能を顕著によって切断される膜タンパク質を切めていた。場談の大きの転移をで置い、は養液やに切り出されてくるビオチン標識タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
活性あるいはそれらの一機能を特異的に阻害するインヒビターを創出することにより、副作用の極めて少ないがん治療薬の開発へ繋げることを目的とした。 昨年度に引き続き、β-アミロイド前駆体タンパク質(APP)に由来する10残基ペプチドインヒビター(APP-IP と命名)が高い MMP-2 選択性を持つこと、および MMP-2 選択性に関与する APP-IP のアミノ酸残基がこれまでの研究で明らかになっていることを利用して、APP-IP を改変し、他の MMPs 対して選択性を持つペプチドインヒビターを開発することを試みた。 APP-IP の改変方法としては、選択性に関与するアミノ酸残基を一つずつ20種のアミノ酸を網羅するようにランダム変異を導入し、標的 MMP との特異性性獲得を指標に選別を行った。選別方法は、APP-IP 改変体を GST 融合タンパク質として菌体内に発現させ、各クローンの溶解がについて標的 MMP および MMP-2 をリガンドとしたリガンドブロッティング法により親和性を調べる方法を用いた。その結果、MMP-9 と MMP-7 のそれぞれに対する親和性が高まり、反対に MMP-2 との親和性が顕著に低下する APP-IP 改変体が得られた。一方、MTI-MMP は各種APP-IP 改変体に対する親和性スペクトラムが MMP-2 のそれと類似しており、選択性を顕著に高めることは困難であったが、MMP-2 に対する親和性より MTI-MMP に対する親和性が高い APP-IP 改変体が得られた。また、MMP-9 に対する親和性より MTI-MMP に対する親和性が高い APP-IP 改変体が得られた。また、MMP-9 に対する祖書選択性を高めたペプチドはこれをいくつかの MMP-9 結合性タンパク質と組み合わせることにより、その阻害活性と MMP-9 選択性を飛躍的に高めることに成功した。 一方、私達は、がん細胞表層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜タンパク質を切断し、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上昇させることを見出してきたが、MMP-7 によって切断される膜タンパク質は未同定であった。今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り出されてくるビオチン標識タンパク質断片をトリプシン消化→質量分析を行うことにより同定したところ、I 型膜タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
【研究内容・成果】 昨年度に引き続き、β-アミロイド前駆体タンパク質(APP)に由来する 10 残基ペプチドインヒビター(APP-IP と命名)が高い MMP-2 選択性を持つこと、および MMP-2 選択性に関与する APP-IP のアミノ酸残基がこれまでの研究で明らかになっていることを利用して、APP-IP を改変し、他の MMPs 対して選択性を持つペプチドインヒビターを開発することを試みた。 APP-IP の改変方法としては、選択性に関与するアミノ酸残基を一つずつ 20 種のアミノ酸を網羅するようにランダム変異を導入し、標的 MMP との特異性性獲得を指標に選別を行った。選別方法は、APP-IP 改変体を GST 融合タンパク質として菌体内に発現させ、各クローンの溶解物について標的 MMP および MMP-2 をリガンドとしたリガンドブロッティング法により親和性を調べる方法を用いた。その結果、MMP-9 と MMP-7 のそれぞれに対する親和性が高まり、反対に MMP-2 との親和性が顕著に低下する APP-IP 改変体が得られた。一方、MT1-MMP は各種APP-IP 改変体に対する親和性スペクトラムが MMP-2 のそれと類似しており、選択性を顕著に高めることは困難であったが、MMP-2 に対する親和性より MT1-MMP に対する親和性が高い APP-IP 改変体が得られた。また、MMP-9 に対する親和性より MT1-MMP に対する親和性が高い APP-IP 改変体が得られた。また、MMP-9 に対する観き選択性を高めたペプチドはこれをいくつかの MMP-9 結合性タンパク質と組み合わせることにより、その阻害活性と MMP-9 選択性を飛躍的に高めることに成功した。 一方、私達は、がん細胞表層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜タンパク質を切断し、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上昇させることを見出してきたが、MMP-7 によって切断される膜タンパク質は未同定であった。今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り出されてくるビオチン標識タンパク質がよるに大き、サーブ・ログである HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
研究内容・成果】 昨年度に引き続き、β-アミロイド前駆体タンパク質(APP)に由来する10 残基ペプチドインヒビター(APP-IP と命名)が高い MMP-2 選択性を持つこと、および MMP-2 選択性に関与する APP-IP のアミノ酸残基がこれまでの研究で明らかになっていることを利用して、APP-IP を改変し、他の MMPs 対して選択性を持つペプチドインヒビターを開発することを試みた。 APP-IP の改変方法としては、選択性に関与するアミノ酸残基を一つずつ 20 種のアミノ酸を網羅するようにランダム変異を導入し、標的 MMP との特異性性獲得を指標に選別を行った。選別方法は、APP-IP 改変体を GST 融合タンパク質として菌体内に発現させ、各クローンの溶解物について標的 MMP および MMP-2 をリガンドとしたリガンドブロッティング法により親和性を調べる方法を用いた。その結果、MMP-9 と MMP-7 のそれぞれに対する親和性が高まり、反対に MMP-2 との親和性が顕著に低下する APP-IP 改変体が得られた。一方、MT1-MMP は各種APP-IP 改変体に対する親和性スペクトラムが MMP-2 のそれと類似しており、選択性を顕著に高めることは困難であったが、MMP-2 に対する親和性より MT1-MMP に対する親和性が高い APP-IP 改変体が得られた。また、MMP-9 に対する阻害選択性を高めたペプチドはこれをいくつかの MMP-9 結合性タンパク質と組み合わせることにより、その阻害活性と MMP-9 選択性を飛躍的に高めることに成功した。 一方、私達は、がん細胞表層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜タンパク質を切断し、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上昇させることを見出してきたが、MMP-7 によって切断される膜タンパク質は未同定であった。今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り出されてくるビオチン標識タンパク質断片をトリプシン消化→質量分析を行うことにより同定したところ、I 型膜タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
ンヒビター(APP-IPと命名)が高い MMP-2 選択性を持つこと、および MMP-2 選択性に関与する APP-IP のアミノ酸残基がこれまでの研究で明らかになっていることを利用して、APP-IP を改変し、他の MMPs 対して選択性を持つペプチドインヒビターを開発することを試みた。 APP-IP の改変方法としては、選択性に関与するアミノ酸残基を一つずつ 20 種のアミノ酸を網羅するようにランダム変異を導入し、標的 MMP との特異性性獲得を指標に選別を行った。 選別方法は、APP-IP 改変体を GST 融合タンパク質として菌体内に発現させ、各クローンの溶解物について標的 MMP および MMP-2 をリガンドとしたリガンドブロッティング法により親和性を調べる方法を用いた。その結果、MMP-9 と MMP-7 のそれぞれに対する親和性が高まり、反対に MMP-2 との親和性が顕著に低下する APP-IP 改変体が得られた。一方、MT1-MMP は各種 APP-IP 改変体に対する親和性スペクトラムが MMP-2 のそれと類似しており、選択性を顕著に高めることは困難であったが、MMP-2 に対する親和性より MT1-MMP に対する親和性が高い APP-IP 改変体が得られた。また、MMP-9 に対する親和性より MT1-MMP に対する親和性が高い APP-IP 改変体が得られた。また、MMP-9 に対する限害選択性を高めたペプチドはこれをいくつかの MMP-9 結合性タンパク質と組み合わせることにより、その阻害活性と MMP-9 選択性を飛躍的に高めることに成功した。 一方、私達は、がん細胞表層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜タンパク質を切断し、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上昇させることを見出してきたが、MMP-7 によって切断される膜タンパク質は未同定であった。今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り出されてくるビオチン標識タンパク質断片をトリプシン消化一質量分析を行うことにより同定したところ、I 型膜タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
る APP-IP のアミノ酸残基がこれまでの研究で明らかになっていることを利用して、APP-IP を改変し、他の MMPs 対して選択性を持つペプチドインヒビターを開発することを試みた。 APP-IP の改変方法としては、選択性に関与するアミノ酸残基を一つずつ 20 種のアミノ酸を網羅するようにランダム変異を導入し、標的 MMP との特異性性獲得を指標に選別を行った。選別方法は、APP-IP 改変体を GST 融合タンパク質として菌体内に発現させ、各クローンの溶解物について標的 MMP および MMP-2 をリガンドとしたリガンドブロッティング法により親和性を調べる方法を用いた。その結果、MMP-9 と MMP-7 のそれぞれに対する親和性が高まり、反対に MMP-2 との親和性が顕著に低下する APP-IP 改変体が得られた。一方、MT1-MMP は各種APP-IP 改変体に対する親和性スペクトラムが MMP-2 のそれと類似しており、選択性を顕著に高めることは困難であったが、MMP-2 に対する親和性より MT1-MMP に対する親和性が高い APP-IP 改変体が得られた。また、MMP-9 に対する視和性より MT1-MMP に対する親和性が高い APP-IP 改変体が得られた。また、MMP-9 に対する阻害選択性を高めたペプチドはこれをいくつかの MMP-9 結合性タンパク質と組み合わせることにより、その阻害活性と MMP-9 選択性を飛躍的に高めることに成功した。 一方、私達は、がん細胞表層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜タンパク質を切断し、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上昇させることを見出してきたが、MMP-7 によって切断される膜タンパク質は未同定であった。今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り出されてくるビオチン標識タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り出されてくるビオチン標識タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り出されてくるビオチン標識タンパク質が上をいていていていていていていていていかに対していていていていていていていていていていていていていていていていていていてい
改変し、他の MMPs 対して選択性を持つペプチドインヒビターを開発することを試みた。 APP-IP の改変方法としては、選択性に関与するアミノ酸残基を一つずつ 20 種のアミノ酸を網羅するようにランダム変異を導入し、標的 MMP との特異性性獲得を指標に選別を行った。 選別方法は、APP-IP 改変体を GST 融合タンパク質として菌体内に発現させ、各クローンの溶解物について標的 MMP および MMP-2 をリガンドとしたリガンドブロッティング法により親和性を調べる方法を用いた。その結果、MMP-9 と MMP-7 のそれぞれに対する親和性が高まり、反対に MMP-2 との親和性が顕著に低下する APP-IP 改変体が得られた。一方、MT1-MMP は各種APP-IP 改変体に対する親和性スペクトラムが MMP-2 のそれと類似しており、選択性を顕著に高めることは困難であったが、MMP-2 に対する親和性より MT1-MMP に対する親和性が高い APP-IP 改変体が得られた。また、MMP-9 に対する阻害選択性を高めたペプチドはこれをいくつかの MMP-9 結合性タンパク質と組み合わせることにより、その阻害活性と MMP-9 選択性を飛躍的に高めることに成功した。 一方、私達は、がん細胞表層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜タンパク質を切断し、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上昇させることを見出してきたが、MMP-7 によって切断される膜タンパク質は未同定であった。今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り出されてくるビオチン標識タンパク質断片をトリプシン消化→質量分析を行うことにより同定したところ、I 型膜タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
APP-IP の改変方法としては、選択性に関与するアミノ酸残基を一つずつ20種のアミノ酸を網羅するようにランダム変異を導入し、標的 MMP との特異性性獲得を指標に選別を行った。選別方法は、APP-IP 改変体を GST 融合タンパク質として菌体内に発現させ、各クローンの溶解物について標的 MMP および MMP-2 をリガンドとしたリガンドブロッティング法により親和性を調べる方法を用いた。その結果、MMP-9 と MMP-7 のそれぞれに対する親和性が高まり、反対に MMP-2 との親和性が顕著に低下する APP-IP 改変体が得られた。一方、MT1-MMP は各種APP-IP 改変体に対する親和性スペクトラムが MMP-2 のそれと類似しており、選択性を顕著に高めることは困難であったが、MMP-2 に対する親和性より MT1-MMP に対する親和性が高いAPP-IP 改変体が得られた。また、MMP-9 に対する阻害選択性を高めたペプチドはこれをいくつかの MMP-9 結合性タンパク質と組み合わせることにより、その阻害活性と MMP-9 選択性を飛躍的に高めることに成功した。 一方、私達は、がん細胞表層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜タンパク質を切断し、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上昇させることを見出してきたが、MMP-7 によって切断される膜タンパク質は未同定であった。今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り出されてくるビオチン標識タンパク質断片をトリプシン消化→質量分析を行うことにより同定したところ、I 型膜タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
網羅するようにランダム変異を導入し、標的 MMP との特異性性獲得を指標に選別を行った。 選別方法は、APP-IP 改変体を GST 融合タンパク質として菌体内に発現させ、各クローンの溶解物について標的 MMP および MMP-2 をリガンドとしたリガンドブロッティング法により親和性を調べる方法を用いた。その結果、MMP-9 と MMP-7 のそれぞれに対する親和性が高まり、反対に MMP-2 との親和性が顕著に低下する APP-IP 改変体が得られた。一方、MTI-MMP は各種APP-IP 改変体に対する親和性スペクトラムが MMP-2 のそれと類似しており、選択性を顕著に高めることは困難であったが、MMP-2 に対する親和性より MTI-MMP に対する親和性が高い APP-IP 改変体が得られた。また、MMP-9 に対する阻害選択性を高めたペプチドはこれをいくつかの MMP-9 結合性タンパク質と組み合わせることにより、その阻害活性と MMP-9 選択性を飛躍的に高めることに成功した。 一方、私達は、がん細胞表層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜タンパク質を切断し、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上昇させることを見出してきたが、MMP-7 によって切断される膜タンパク質は未同定であった。今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り出されてくるビオチン標識タンパク質断片をトリプシン消化→質量分析を行うことにより同定したところ、I型膜タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
選別方法は、APP-IP 改変体を GST 融合タンパク質として菌体内に発現させ、各クローンの溶解物について標的 MMP および MMP-2 をリガンドとしたリガンドブロッティング法により親和性を調べる方法を用いた。その結果、MMP-9 と MMP-7 のそれぞれに対する親和性が高まり、反対に MMP-2 との親和性が顕著に低下する APP-IP 改変体が得られた。一方、MT1-MMP は各種APP-IP 改変体に対する親和性スペクトラムが MMP-2 のそれと類似しており、選択性を顕著に高めることは困難であったが、MMP-2 に対する親和性より MT1-MMP に対する親和性が高い APP-IP 改変体が得られた。また、MMP-9 に対する阻害選択性を高めたペプチドはこれをいくつかの MMP-9 結合性タンパク質と組み合わせることにより、その阻害活性と MMP-9 選択性を飛躍的に高めることに成功した。 一方、私達は、がん細胞表層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜タンパク質を切断し、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上昇させることを見出してきたが、MMP-7 によって切断される膜タンパク質は未同定であった。今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り出されてくるビオチン標識タンパク質断片をトリプシン消化→質量分析を行うことにより同定したところ、I 型膜タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
解物について標的 MMP および MMP-2 をリガンドとしたリガンドブロッティング法により親和性を調べる方法を用いた。その結果、MMP-9 と MMP-7 のそれぞれに対する親和性が高まり、反対に MMP-2 との親和性が顕著に低下する APP-IP 改変体が得られた。一方、MTI-MMP は各種APP-IP 改変体に対する親和性スペクトラムが MMP-2 のそれと類似しており、選択性を顕著に高めることは困難であったが、MMP-2 に対する親和性より MTI-MMP に対する親和性が高いAPP-IP 改変体が得られた。また、MMP-9 に対する阻害選択性を高めたペプチドはこれをいくつかの MMP-9 結合性タンパク質と組み合わせることにより、その阻害活性と MMP-9 選択性を飛躍的に高めることに成功した。 一方、私達は、がん細胞表層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜タンパク質を切断し、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上昇させることを見出してきたが、MMP-7 によって切断される膜タンパク質は未同定であった。今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り出されてくるビオチン標識タンパク質断片をトリプシン消化→質量分析を行うことにより同定したところ、I 型膜タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
性を調べる方法を用いた。その結果、MMP-9 と MMP-7 のそれぞれに対する親和性が高まり、反対に MMP-2 との親和性が顕著に低下する APP-IP 改変体が得られた。一方、MT1-MMP は各種APP-IP 改変体に対する親和性スペクトラムが MMP-2 のそれと類似しており、選択性を顕著に高めることは困難であったが、MMP-2 に対する親和性より MT1-MMP に対する親和性が高いAPP-IP 改変体が得られた。また、MMP-9 に対する阻害選択性を高めたペプチドはこれをいくつかの MMP-9 結合性タンパク質と組み合わせることにより、その阻害活性と MMP-9 選択性を飛躍的に高めることに成功した。 一方、私達は、がん細胞表層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜タンパク質を切断し、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上昇させることを見出してきたが、MMP-7 によって切断される膜タンパク質は未同定であった。今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り出されてくるビオチン標識タンパク質断片をトリプシン消化→質量分析を行うことにより同定したところ、I 型膜タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
対に MMP-2 との親和性が顕著に低下する APP-IP 改変体が得られた。一方、MT1-MMP は各種 APP-IP 改変体に対する親和性スペクトラムが MMP-2 のそれと類似しており、選択性を顕著に高めることは困難であったが、MMP-2 に対する親和性より MT1-MMP に対する親和性が高い APP-IP 改変体が得られた。また、MMP-9 に対する阻害選択性を高めたペプチドはこれをいくつかの MMP-9 結合性タンパク質と組み合わせることにより、その阻害活性と MMP-9 選択性を飛躍的に高めることに成功した。 一方、私達は、がん細胞表層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜タンパク質を切断し、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上昇させることを見出してきたが、MMP-7 によって切断される膜タンパク質は未同定であった。今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り出されてくるビオチン標識タンパク質断片をトリプシン消化→質量分析を行うことにより同定したところ、I 型膜タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
APP-IP 改変体に対する親和性スペクトラムが MMP-2 のそれと類似しており、選択性を顕著に高めることは困難であったが、MMP-2 に対する親和性より MT1-MMP に対する親和性が高い APP-IP 改変体が得られた。また、MMP-9 に対する阻害選択性を高めたペプチドはこれをいくつかの MMP-9 結合性タンパク質と組み合わせることにより、その阻害活性と MMP-9 選択性を飛躍的に高めることに成功した。 一方、私達は、がん細胞表層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜タンパク質を切断し、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上昇させることを見出してきたが、MMP-7 によって切断される膜タンパク質は未同定であった。今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り出されてくるビオチン標識タンパク質断片をトリプシン消化→質量分析を行うことにより同定したところ、I 型膜タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
高めることは困難であったが、MMP-2 に対する親和性より MT1-MMP に対する親和性が高い APP-IP 改変体が得られた。また、MMP-9 に対する阻害選択性を高めたペプチドはこれをいく つかの MMP-9 結合性タンパク質と組み合わせることにより、その阻害活性と MMP-9 選択性を飛躍的に高めることに成功した。 一方、私達は、がん細胞表層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜 タンパク質を切断し、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上昇させることを見出してきたが、MMP-7 によって切断される膜タンパク質は未同定であった。 今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り 出されてくるビオチン標識タンパク質断片をトリプシン消化→質量分析を行うことにより同定したところ、I 型膜タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
APP-IP 改変体が得られた。また、MMP-9 に対する阻害選択性を高めたペプチドはこれをいくつかの MMP-9 結合性タンパク質と組み合わせることにより、その阻害活性と MMP-9 選択性を飛躍的に高めることに成功した。 一方、私達は、がん細胞表層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜タンパク質を切断し、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上昇させることを見出してきたが、MMP-7 によって切断される膜タンパク質は未同定であった。今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り出されてくるビオチン標識タンパク質断片をトリプシン消化→質量分析を行うことにより同定したところ、I 型膜タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
つかの MMP-9 結合性タンパク質と組み合わせることにより、その阻害活性と MMP-9 選択性を 飛躍的に高めることに成功した。 一方、私達は、がん細胞表層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜 タンパク質を切断し、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上 昇させることを見出してきたが、MMP-7 によって切断される膜タンパク質は未同定であった。 今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り 出されてくるビオチン標識タンパク質断片をトリプシン消化→質量分析を行うことにより同 定したところ、I 型膜タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
飛躍的に高めることに成功した。 一方、私達は、がん細胞表層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜タンパク質を切断し、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上昇させることを見出してきたが、MMP-7 によって切断される膜タンパク質は未同定であった。今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り出されてくるビオチン標識タンパク質断片をトリプシン消化→質量分析を行うことにより同定したところ、I 型膜タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
一方、私達は、がん細胞表層のコレステロール硫酸に MMP-7 が結合すると、近傍にある膜タンパク質を切断し、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上昇させることを見出してきたが、MMP-7 によって切断される膜タンパク質は未同定であった。今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り出されてくるビオチン標識タンパク質断片をトリプシン消化→質量分析を行うことにより同定したところ、I 型膜タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
タンパク質を切断し、がん細胞の細胞凝集を誘導するとともに、それらの転移能を顕著に上昇させることを見出してきたが、MMP-7によって切断される膜タンパク質は未同定であった。今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7処理を行い、培養液中に切り出されてくるビオチン標識タンパク質断片をトリプシン消化→質量分析を行うことにより同定したところ、I型膜タンパク質であるHAI-1(hepatocyte growth factor activator inhibitor type 1)が MMP-7に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
昇させることを見出してきたが、MMP-7 によって切断される膜タンパク質は未同定であった。 今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り 出されてくるビオチン標識タンパク質断片をトリプシン消化→質量分析を行うことにより同 定したところ、I 型膜タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
今回、がん細胞の表層タンパク質をビオチン標識した後、MMP-7 処理を行い、培養液中に切り出されてくるビオチン標識タンパク質断片をトリプシン消化→質量分析を行うことにより同定したところ、I 型膜タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
出されてくるビオチン標識タンパク質断片をトリプシン消化→質量分析を行うことにより同定したところ、I 型膜タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
定したところ、I 型膜タンパク質である HAI-1 (hepatocyte growth factor activator inhibitor type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
type 1)が MMP-7 に切断されることを明らかにした。また、切り出された HAI-1 細胞外領域に
細胞凝集誘導活性があることを明らかにし、本タンパク質の切断ががん細胞の転移能上昇に
関与することが示唆された。
【成 果 等】 【主な論文発表】
1. Hiroki Sato, Jun Oyanagi, Eriko Komiya, Takashi Ogawa, Shouichi Higashi, and Kaoru Miyazaki
(2014) Amino-terminal fragments of laminin γ2 chain retract vascular endothelial cells and increase
vascular permeability. Cancer Sci. 105, 168-175
2. Go Kamoshida, Takashi Ogawa, Jun Oyanagi, Hiroki Sato, Eriko Komiya, <u>Shouichi Higashi</u> , Kaoru
Miyazaki, and Tsutomu Tsuji (2014) Modulation of matrix metalloproteinase-9 secretion from
tumor-associated macrophage-like cells by proteolytically processed laminin-332 (laminin-5). Clin.
Exp. Metastasis 31, 285-291
3. Eriko Komiya, Hiroki Sato, Naoko Watanabe, Marii Ise, Shouichi Higashi, Yohei Miyagi, and Kaoru
Miyazaki (2014) Angiomodulin, a marker of cancer vasculature, is upregulated by vascular endothelial
growth factor and increases vascular permeability as a ligand of integrin ανβ3. Cancer Med. 3,
537-549

- 4. Jun Oyanagi, Nako Kojima, Hiroki Sato, <u>Shouichi Higashi</u>, Keiji Kikuchi, Katsuya Sakai, Kunio Matsumoto, and Kaoru Miyazaki (2014) Inhibition of transforming growth factor-β signaling potentiates tumor cell invasion into collagen matrix induced by fibroblast-derived hepatocyte growth factor. *Exp. Cell Res.* **326**, 267-279
- 5. Kazuhiro Yamamoto, Kaoru Miyazaki, and <u>Shouichi Higashi</u> (2014) Pericellular proteolysis by matrix metalloproteinase-7 is differentially modulated by cholesterol sulfate, sulfatide, and cardiolipin. *FEBS J.* **281**, 3346-3356

【学会発表】

- 1. 佐野 未奈、<u>東</u> 昌市: がん細胞浸潤および血管内皮細胞増殖に及ぼす高特異性MMP-2 インヒビターの効果。第36回日本血栓止血学会(大阪)、演題番号<math>0-112, P-032、2014年5月29-31日
- 2. 佐藤 拓輝, $\underline{\pi}$ 昌市: がん浸潤マーカー・ラミニン γ 2 鎖の血管内皮下浸潤活性とその機構。第36回日本血栓止血学会(大阪)、演題番号0-113, P -033、2014年5月29-31日
- 3. 石川 智弘、木村 弥生、平野 久、<u>東 昌市</u>: MMP-7により切断修飾を受ける細胞表層タンパク質の同定。第19回日本病態プロテアーゼ学会学術集会(大阪)、演題番号9、2014年8月8-9日
- 4. 佐野 未奈、<u>東 昌市</u>:高特異性MMP-2インヒビターのがん細胞浸潤抑制効果と血管新生に及ぼす効果。第87回日本生化学会大会(京都)、2P-396、2014年10月15-18日
- 5. 石川 智弘、木村 弥生、平野 久、<u>東 昌市</u>: がん細胞表層に結合したMMP-7によって切断され、細胞凝集を惹起するタンパク質の同定。第87回日本生化学会大会(京都)、2T15a-12、2P-399、2014年10月15-18日
- 6. 得津奏子、菅原経継、井野洋子、倉田洋一、木村弥生、<u>東 昌市</u>、平野 久:ヒト 26S プロテアソームサブユニットのリン酸化修飾状態の解析。第65回日本電気泳動学会総会・シンポジウム (横浜)、P-8、2014年10月24-25日

【その他特筆事項】

研究室学生の受賞があり、それぞれ、横浜市立大学IPで紹介して頂きました。

- 1. 佐野 未奈、第36回日本血栓止血学会 優秀ポスター発表賞 http://www.yokohama-cu.ac.jp/campuslife/140623.html
- 2. 石川 智弘、第19回日本病態プロテアーゼ学会学術集会 Young Investigators Award http://www.yokohama-cu.ac.jp/campuslife/140828.html
- 3. 石川 智弘、第 87 回日本生化学会大会 若手優秀発表賞 http://www.yokohama-cu.ac.jp/campuslife/141215.html
- 4. 得津奏子、第65回日本電気泳動学会総会・シンポジウム 優秀ポスター賞 http://www.yokohama-cu.ac.jp/campuslife/141212.html

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

	平成 26 年度 金沢大学が 研究区分	ぶん進展制御研究所 共同研究報告書 一般研究
研究課題		ト型抗 ADAM28 抗体開発と ADAM28 活性調節機構解析
ment who be to be	所属・職名・氏名	
研究代表者	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	慶應義塾大学・専任講師・望月早月
受入担当教員	職名・氏名	教授・佐藤博
【研究目的】	本研究では ADAM28 の細胞膜上での活性調節機構を解析するとともに、ヒト型抗ADAM28 抗体による in vivo での腫瘍細胞増殖・転移抑制効果を実験的に検証し、肺癌に対する新規分子標的治療薬開発のための基礎研究を進める。また、ADAM28 特異的合成蛍光ペプチドを用いた簡便で迅速な活性測定法を確立する。	
【研究内容・成果】	体(211-12 と 211-14)を開発 (PC-9 ffLuc-cp156)を作製し、で作用を検討した。PC-9 ffLuc-cp 抗体を投与すると、肺転移 移植後 17 週ですべて死亡 1)。 さらに、マウス ADAM 量を投与する毒性試験では に著変は認められなかった 体は、ADAM28 分子標的が	60
【成 果 等】	Hidenori Shimizu, Hiroyuk overexpressed in human os Arthritis Rheum. 2015 in J 【学会発表】 1. Satsuki Mochizuki, Hitosh: Akira Miyakoshi, Kanehis: ADAM28 on cancer cell Rotterdam, 2014 年 6 月 23 2. 望月早月、岡田保典:非不住用機構(シンポジスト	ni Abe, Masayuki Shimoda, Noriko Aramaki-Hattori, Yuka Miyamae, ta Kojoh and Yasunori Okada: Effects of human antibodies against growth and metastasis. 1 st Matrix Biology Europe Conference, 3 日 小細胞肺癌の分子標的治療を目指したヒト型抗 ADAM28 抗体の
	なし	

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

		机业中开发
	研究区分	一般共同研究
	研究課題	ケモカインを始めとする炎症性サイトカインと癌の病態に関
研究代表者	所属・職名・氏名	福井大学医学部・教授・中本安成
研究分担者	所属・職名・氏名	福井大学医学部・大学院生・内藤達志
受入担当教員	職名・氏名	教授・向田直史
【研究目的】	いる。しかし、その分子・組 は腫瘍を皮下接種したマウス るケモカインの同定と機能解	の白血球浸潤・免疫反応の増強が認められることが報告されて 地胞レベルでの機構についてはいまだ不明な点が多い。本研究で に抗がん剤を投与し、腫瘍部位に誘導される白血球や産生され が好からことによって、最終的に抗がん剤による免疫賦活化過 る機構やケモカインを標的とした治療法の開発を目指す。
【研究内容・成果】	方法 1) マウス肝癌細胞株 BNL 1ME 射し,腫瘍を形成した時点で腫瘍容量を観察した。 2) 抗 CD4 抗体あるいは CD8 打察した。 3) CTX 投与 3 日目のマウス腫で同定する。また,リアルタ免疫蛍光法で抗 CD4,抗 Grar確認した。 4) 担癌マウス (CD45. 2 ⁺) に CT静脈より移入した。経時的にび所属リンパ節での CFSE 標語CD107a の発現状況を FCM で解5) CTX 投与後,マウス腫瘍約ケモカインを同定した。 6) 5) で同定したケモカインの観察を行った。 7) 受容体 KO マウス由来脾利細胞数を検討した。	A. 7R. 1 (BNL)を野生型マウスならびにヌードマウスの皮下に注 150 mg/kg のシクロホスファミド(CTX)を腹腔内に単回投与し、 立体を投与した野生型マウスに同様の処置を行い、腫瘍容量を観 高組織に関して浸潤したリンパ球をフローサイトメトリー(FCM) イム PCR で Perforin と Granzyme B の発現を検討した。さらに nzyme B 抗体で陽性となる CD4 陽性細胞傷害性 T 細胞(CD4 [†] CTL)を EX を投与し、翌日に CFSE で標識したマウス脾細胞(CD45. 1 [†])を尾 こレシピエントマウスの腫瘍と所属リンパ節を採取し、腫瘍およ 識リンパ球の増殖および浸潤リンパ球表面の細胞傷害顆粒膜蛋白
【成果等】	群では消失せず、再増大したでは、Nudeマウス群同様にCBNLを再接種しても生着せず2)CTX 投与後、リアルタイムた。さらに、腫瘍内でGranz確認した。3) 脾細胞の養子移入後3目に、経時的観察によりCD4*CTへ浸潤していることが確認で4)CTX 投与により腫瘍内でCC5)CCR5KOマウスでは野生型や由来脾細胞を養子移入すると上記の結果より、CTXによカニズムにCCL3・4-CCR5軸に新たな治療戦略の基盤的知【主な論文発表】	CL3・CCL4 の発現上昇を認めた。 マウスに比べ有意に腫瘍再増大が早かった。さらに CCR5KO マウス 野生型脾細胞に対して有意に腫瘍内への浸潤が少なかった。 る抗腫瘍効果に CD4 ⁺ CTL への関与, さらに CD4 ⁺ CTL の腫瘍浸潤メ が関与していることが示唆された。これにより CCR5 を標的とし
	recruitment of LAMP1/CD107a Naito, Tomohisa Baba, Kazuy Mukaida. Cancer Letters (i 2) 放射線療法が著効した He	a-expressing CD4-positive T cells into tumor sites. Tatsushi roshi Takeda, Soichiro Sasaki, Yasunari Nakamoto, and Naofumi

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

【学会発表】

- 1) Cytotoxic CD4+ cells play a crucial role in cyclophosphamide-mediated cytotoxicity without antigen priming. 内藤達志、馬場智久、中本安成、向田直史 第 73 回日本癌学会総会(横浜) 2014年9月25日
- 2) Cytotoxic CD4+ Cells Play a Pivotal Role in Cyclophosphamide-Mediated Cytotoxicity against Hepatoma without Antigen Priming. Tatsushi Naito, Tomohisa Baba, NaofumiMukaida, Yasunari Nakamoto AASLD The Liver Meeting 2014(ボストン) 2014年11月8日
- 3) 抗癌化学療法における CD4 陽性細胞傷害性 T リンパ球による自然免疫反応の検討. 内藤達志、根本朋幸、松田秀岳,大谷昌弘,須藤弘之,中本安成 第 50 回日本肝臓学会総会(東京) 2014 年 5 月 29 日

【その他特筆事項】

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ん進展制御研究所 共同研究報告書
研究区分		一般共同研究
	研究課題	ケモカインを標的とした炎症制御による乳がん転移治療法の 開発研究
研究代表者	所属・職名・氏名	富山大学・和漢医薬学総合研究所・早川芳弘
受入担当教員	職名・氏名	教授・向田直史
【研究目的】	セスに関わる炎症性微小環 新たながん転移治療標的と 炎症性微小環境の成立過程 イメージングの手法を用い ○ がん細胞における炎症性 化する「in vivoがん炎症イ 容体相互作用の炎症性腫瘍 ○ ケモカイン/ケモカイン によるがん悪性化進展、特に	解析のためマウス乳がん自然転移モデルにおける肺転移プロ境でのケモカインの重要性について明らかにするとともに、してのケモカインの可能性を検証する。特に生体内におけるを、がん細胞での炎症性シグナル活性化に着目した生物発光で以下の点について探索する事を目的とする。性シグナル活性化を指標として生物発光イメージングで可視メージング」の実験手法を用いてケモカイン/ケモカイン受機小環境形成における重要性を明らかにする。レ受容体相互作用をターゲットとした腫瘍局所での炎症制御こがん転移標的治療の可能性を in vivo イメージングで明らか
【研究内容・成果】	要性が指摘されている。なん細胞での炎症性シグナルの役割は未だ明らかではないがん細胞でのNFkB活性の経立し、生体内での炎症性腫りして解析した。4T1細胞の目路1b/cマウスへ移植して解析したがあるにとが最近になった。NFkB活性のウスの免疫不全マウスにでした。NFkBにであることが示された。NFkトカイン/ケモカインの発言所でのIL-1ならびにMIP	化進展過程において原発巣または転移巣の腫瘍微小環境の重かでも腫瘍微小環境における炎症性免疫応答とそれに伴うがの関与が示唆されているが、がん病態での時空間的変化やそい。そこで本研究では転写因子 NFkB に着目し、マウス 4T1 乳燥的の変化をモニタリング可能な生物発光イメーイング系を確瘍微小環境の形成過程についてがん細胞の NFkB 活性を指標とNFkB レポータールシフェラーゼ安定発現細胞を樹立し、同系鴻増殖に伴う発光活性の経時的変化を測定した。乳腺脂肪組は対照群である皮下組織への移植の場合と比較して移植 5~70一過性の上昇が観察された。さらに SCID マウス及び nude マコ様の検討を行った結果、NFkB の活性上昇が消失したことが細胞が腫瘍微小環境における 4T1 細胞の NFkB の活性化に必須はB 活性の一過性の上昇が観察される移植7日後の炎症性サイ現解析、ならびに腫瘍浸潤宿主免疫細胞の解析の結果、腫瘍で10産生増強と腫瘍浸潤マクロファージの増加が乳腺脂肪組は対照群である皮下組織への移植の場合と比較して認められ
【成 果 等】	【主な論文発表】 投稿準備中 【学会発表】 髙橋恵生、永井直、 小倉圭 における炎症性腫瘍微小環具	E介、 済木育夫、 入村達郎、 早川芳弘、4T1 乳がんモデル 境形成における T 細胞の重要性, 日本癌学会シンポジウム/共 ポジウム、「がん幹細胞・微小環境・分子標的〜がん進展制御 21日。金沢

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

	THE PER IN	ん進展制御研究所 共同研究報告書
	研究区分	一般共同研究
	研究課題	卵巣癌微小環境におけるケモカインシステムの分子病理学的
		役割の解析および分子標的治療の開発
研究代表者	所属・職名・氏名	和歌山県立医科大学・教授・井箟一彦
研究分担者	所属・職名・氏名	和歌山県立医科大学・准教授・木村章彦
	所属・職名・氏名	和歌山県立医科大学・大学院生・谷﨑優子
	所属・職名・氏名	和歌山県立医科大学大学院生・小林彩
受入担当教員	職名・氏名	教授・向田直史
【研究目的】	卵巣癌は、特に早い段階で腹膜播種という増殖、進展、転移、再発形式をとる点で、血行性転移やリンパ行性転移を主体とするような他の癌種とは異なっている。癌微小環境におけるマクロファージや線維芽細胞などの間質細胞の浸潤・増殖にはケモカインシステムが関与していることが示唆されているが、これまで卵巣癌の腹膜播種におけるケモカインシステムについての詳細な研究はほとんどみられていない。申請者らは、卵巣癌微小環境内の間質細胞と腫瘍細胞のクロストークにおけるケモカインシステムの病態生理的役割を解析している。 さらに、卵巣癌の播種、転移に対する新たな治療法樹立や治療薬の開発といった臨床応用	
【研究内容・成果】 【成 果 等】	さらに、卵巣癌の播種、転移に対する新たな治療法樹立や治療薬の開発といった臨床応用 へ向けて基盤の確立を目指す。	
	【その他特筆事項】 なし	

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

777		大学かん進展制御研究所 共同研究報告書
研究区分		一般共同研究
研究課題		化学物質誘発性皮膚発がんにおけるケモカインの病態生理学的役割解析
研究代表者	所属・職名・氏名	和歌山県立医科大学法医学教室・講師・石田裕子
研究分担者	所属・職名・氏名	和歌山県立医科大学法医学教室・教授・近藤稔和
受入担当教員	職名・氏名	教授・向田直史
【研究目的】	がんの炎症性微小環境では、慢性炎症により組織の恒常性が失われており、実質細胞に由来する腫瘍細胞と間質細胞とのクロストークにより、がんの発症・進展に関与することが証明されている。本研究では、ケモカイン・ケモカインレセプター遺伝子欠損マウスを用いてがんの微小環境内細胞とケモカインシステムの役割に焦点をあて皮膚がんの発症・進展メカニズムを解析する。さらに、その他のケモカインシステムについて、皮膚がんの発症予防や進展抑制の分子標的となり得るか否かについて明らかにすることが本研究の目的である。	
【研究内容・成果】		
【成果等】	図 1 【主な論文発表】	図 2
	なし 【学会発表】 1. <u>Ishida Y</u> , Kuninak	xa Y, Nosaka M, Tanaka T, Shinozaki K, Kimura A, <u>Mukaida N, Kondo T</u> . The MIP-1alpha exaggerated CaCl2-induced aortic aneurysm. 第 43 回日本免疫学会14.12

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

	平成 26 年度 金沢大字か	5.人進展制御研究所 共同研究報告書
研究区分		一般共同研究
	研究課題	慢性骨髄性白血病患者におけるケモカイン CCL3 発現量の経時 解析
研究代表者	所属・職名・氏名	順天堂大学・教授・小松則夫
研究分担者	所属・職名・氏名	順天堂大学・助教・森下総司
受入担当教員	職名・氏名	教授・向田直史
【研究目的】	症初期において、BCR-ABL した。本研究はこの結果に着	I病のモデルマウスを用いた検討により、慢性骨髄性白血病の発 陽性白血病細胞中の CCL3 発現量が顕著に上昇することを見出 見想を得、ヒト慢性骨髄性白血病患者において、チロシンキナー おける CCL3 発現の経時変化を解析し、臨床的意義を解明する
【研究内容・成果】	順天堂大学医学部 血液内科学講座にて初診時から保管されている慢性骨髄性白血病患者 12名の骨髄より採取した total RNA を対象として、初発時(未治療時)とチロシンキナーゼ 阻害薬による投薬治療開始後 3 ヶ月経過時点での CCL3 発現量と BCR-ABL 発現量を定量した。 CCL3 発現量定量にはΔΔCt 法を用い、内在性コントロールとして GAPDH を用いた。 BCR-ABL 発現量定量は定量的 RT-PCR 法を用い、ABL を内在性コントロールとして検体間の差を標準化した。結果として、全ての検体においてチロシンキナーゼ阻害薬投薬に伴う BCR-ABL 発現量の低下を認めたが、CCL3 発現量は上昇した。これは、CCL3 を発現する初期段階の白血病細胞はチロシンキナーゼ阻害薬に抵抗性であり、採取した検体中の CCL3 発現細胞の割合が高くなることによるものと考えられた。 また、検討した 12 例のうち 3 例において、投薬開始後 18 ヶ月まで CCL3 と BCR/ABL 発現量を追跡したところ、BCR/ABL 発現量はいずれの検体においても減衰していき、検出感度以下となったが、CCL3 発現量はこれに相関せず、初診時と比較し高値を維持した。しかしながら、BCR/ABL が検出されない状態にあっても CCL3 の発現量は検体間で差があり、TKI治療抵抗性の初期段階にある白血病細胞量の推移を検出している可能性が考えられた。この結果をより詳細に考察するためには、チロシンキナーゼ阻害薬治療を中止した後の CCL3 発現量を追跡する必要であると考えられた。	
【成 果 等】	【主な論文発表】 なし 【学会発表】 なし 【その他特筆事項】 なし	

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

	平成 26 年度 金沢大字が	6. 人進展制御研究所 共同研究報告書
,	研究区分	一般共同研究
	研究課題	shRNA ライブラリーを用いたパイロトーシス関連遺伝子の網羅 的同定
研究代表者	所属・職名・氏名	東京大学大学院新領域創成科学研究科・教授・鈴木穣
受入担当教員	職名・氏名	教授・須田貴司
【研究目的】	は、細菌に感染したマクロフ 心筋細胞、がん細胞など様々 糖尿病、がんなど様々な疾患 は種々の炎症誘導物質が放出 境の形成に寄与すると考えら	ペーゼ1依存性のネクローシス様プログラム細胞死である。当初ファージなどで見られる細胞死として報告されたが、神経細胞、大な細胞種でも同様の細胞死が報告されており、神経変性疾患、ほに関与することが示唆されている。パイロトーシス死細胞から出されるため、腫瘍内でパイロトーシスが起きれば炎症性微小環かれる。しかし、パイロトーシスの分子メカニズムについてはほれたがってその人為的な制御法も確立されていない。
【研究内容・成果】	シスのシグナル伝達において 遺伝子(PYCARD)を標的とす 能したと考えられる。今後は	DECIPHER SNRNA IIDFARES Dar-code UbiC TagRFP 2A PuroR 3'ALTR DHER Aが、と のサ P 刺 する 組み を で網 P 刺 った を 同 図)右下 2 次元ドットプロット内の赤い四角で囲まれたドットが MDP 処 現RNA 理後に濃縮された shRNA を示す。この内 3 つが ASC 遺伝子 (PYCARD) を標
【成 果 等】	【主な論文発表】なし 【学会発表】なし 【その他特筆事項】	

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

		ん進展制御研究所 共同研究報告書
研究区分		一般共同研究
	研究課題	Fas および Fas リガンドに対するアゴニスト、アンタゴニスト環状ペ プチドの開発
研究代表者	所属・職名・氏名	東京大学大学院理学研究科化学専攻・教授・菅裕明
研究分担者	所属・職名・氏名	東京大学大学院理学研究科化学専攻・助教・後藤佑樹
	所属・職名・氏名	東京大学大学院理学研究科化学専攻・修士課程学生・宮地大輝
受入担当教員	職名・氏名	教授・須田貴司
【研究目的】	Fas は Fas リガンドに結合することで細胞にアポトーシスを誘導する細胞表面受容体である。Fas や Fas リガンドの欠損は悪性リンパ腫や扁平上皮癌の発生頻度を高める。したがって、Fas アゴニストはこれらの悪性腫瘍の治療に有用である可能性がある。一方、肝炎を含む様々な炎症性疾患で Fas/Fas リガンド系の病理的役割が報告されている。従って、Fas アンタゴニストは肝炎などの治療に有用である可能性がある。そこで、本共同研究では、我々が開発した RaPID システムを用い、Fas に対するアゴニスト、アンタゴニストの開発を試みた。	
【研究内容・成果】	我々は、独自の方法で非天然アミノ酸を tRNA にアミノアシル化し、任意のアミノ酸配列を持つペプチドを翻訳合成すると技術と、膨大な種類のペプチドをコードした人工遺伝子の複合体の中から、任意の蛋白に結合するペプチドを迅速にスクリーニングする技術、RaPID システムを開発した。この技術を駆使することで、様々な蛋白に極めて高い親和性で結合する大環状特殊ペプチドの同定が可能になり、種々の受容体蛋白に対するアゴニストやアンタゴニストの開発に応用することが出来る。そこで、須田らが調製した Fas の細胞外領域とヒト IgG1 抗体 Fc 領域の融合蛋白、Fas-Fcをプロテイン A カラムに固定化して、Fas-Fc カラムを調整した、RaPID システムで作成したペプチド-人工遺伝子複合体ライブラリーを Fas-Fc カラムに添加し、結合した複合体から人工遺伝子を回収して増幅した。このサイクルを6回繰り返すことで、11 種類の Fas 結合ペプチドを獲得した。ペプチドは、HPLCで精製し MALDI-TOFで確認した。次に、得られた Fas 結合ペプチドがアゴニスト(Fas リガンド様)活性を示すか検討する目的で、Fas 発現細胞株(W4)に添加し、6 時間培養後の細胞の生存率を WST1 アッセイで検討したが、残念ながらアコニスト活性を示すペプチドは得られなかった。さらに、得られた Fas 結合ペプチドがアンタゴニスト(Fas リガンド阻害)活性を示すか検討する目的で、ペプチドをW4 細胞に添加した後、Fas リガンドを添加し、さらに6 時間培養後の細胞生存率を検討した。この検討でも、残念ながら Fas リガンドによる細胞死誘導を阻害するペプチドは見出されなかった。今後は、Fas 結合ペプチドの多量体化により Fas に対するアゴニストペプチドを得られるか検討するとともに、Fas リガンドを固定化したカラムを作成し、Fas リガンド結合ペプチドの獲得を目指す。	
	【主な論文発表】【学会発表】なし【その他特筆事項】なし	

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

		一般共同研究 一般共同研究
研究区分 研究課題		ビタミン B6 によるインフラマソームの制御とがんの一次予防
研究代表者	所属・職名・氏名	広島大学大学院生物圏科学研究科・教授・加藤 範久
受入担当教員	職名・氏名	教授・須田 貴司
【研究目的】	ビタミン B6 はピリドキサール (PL)、ピリドキサミン (PM)、ピリドキシン (PN) およびそれらのリン酸化体 (PLP, PMP, PNP) からなる水溶性ビタミンである。我々は、ビタミン B6 がAzoxymethane 誘導マウス大腸がんモデルにおいて発がん予防効果を示すこと、NF- κ B 活性化を抑制し、発がんに寄与する iNOS や COX-2 の発現を抑制することを見出した (J. Nutrition, 131:2204-2207, 2001)。 また、須田教授らとの共同研究で、ビタミン B6 がマクロファージからの炎症性サイトカイン IL-1 β の産生を抑制することを見出した。そこで、本研究では、ビタミン B6 による IL-1 β 産生抑制機構を解析するとともに、動物モデルでも効果を検討した。	
【研究内容・成果】	IL-1 β の産生には、NF- κ Bの活性化によるプロ IL-1 β の発現に加え、カスパーゼ 1 の活性化による IL-1 β の成熟が必要である。最近の研究から、カスパーゼ 1 の活性化には NLRP3、NLRC4 などの細胞質パターン認識受容体やアダプター蛋白 ASC を含むインフラマソームと呼ばれる蛋白複合体の形成が必要であることが判明している。本研究では以下の結果を得た。 1) LPS 処理でプロ IL-1 β を誘導したマウス腹腔マクロファージを、NLRP3 を活性化する ATP、ニゲリシン、尿酸ナトリウム結晶、黄色ブドウ球菌感染などで刺激すると、IL-1 β の産生が誘導される。この実験系で、NLRP3 活性化刺激を加える前に PL や PLP で刺激すると IL-1 β の産生が調制された。一方、PM や PN にはそのような活性は無かった。同様の現象はヒト単球様細胞株 THP-1 を用いても認められた。また、NLRC4 を活性化するサルモネラ菌感染による IL-1 β の産生には影響しなかった。これらのことから、PL や PLP はヒトとマウスの両方で、NLRP3依存性の IL-1 β 産生を抑制することが明らかになった。 2) LPS で前処理した腹腔マクロファージをニゲリシンなどで刺激すると、巨大な ASC の凝集体が形成される。この ASC 凝集体の形成は効率的な IL-1 β 産生に必要であることが報告されている。この実験系でニゲリシン処理前に PL または PLP で処理すると ASC 凝集体の形成が阻害された。従って、PL および PLP は ASC 凝集体の形成より上流で NLRP3-ASC-カスパーゼ 1 経路を阻害すると考えられる。 3) 致死量の LPS をマウス腹腔に投与することで誘導する NLRP3 依存性の敗血症モデルにおいて、高容量のビタミン B6 を事前に投与することにより、腹腔内の IL-1 β レベルの上昇が抑制され、マウスの生存率が改善した。逆にビタミン B6 欠乏食で飼育したマウスは LPS 腹腔投与による IL-1 β 産生が増加する傾向を示したが、今回の実験条件では生存率の有意な変化は認められなかった。 以上の結果より、ビタミン B6 は NLRP3 依存性 IL-1 β 産生を抑制するとともに、NLRP3 が関与する疾患の治療に有効である可能性が示唆された。	
【成 果 等】	【学会発表】 【学会発表】 (発表予定) Zhang P, Kinoshita T, Kushiyama H, Suidasari S, Kato N, Suda T. Vitamin B6 prevents IL-1β production through inhibition of NLRP3 inflammasome activation. 12th Asian Congress of Nutrition, May 16, 2015, Yokohama	

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

		ん 進展制御研究所 共同研究報告書
研究区分		一般共同研究
研究課題		PYNOD 遺伝子が獲得免疫反応に及ぼす影響の検討
研究代表者	所属・職名・氏名	鳥取大学・准教授・吉野三也
受入担当教員	職名・氏名	教授・須田貴司
【研究目的】	炎症反応に関与する NLRP ファミリー分子で唯一炎症抑制に働くと報告されている PYNOD (Nlrp10) 分子が獲得免疫反応に及ぼす影響を、T 細胞機能と生体内樹状細胞の動態の二点から解析するのが目的である。須田らは、PYNOD 分子を独自にクローニングしノックアウトマウスを作製(Wang et al, Int. Immunol. 2004)、このマウスで、獲得免疫反応が低下していることを見出した。一方、同分子の欠損が樹状細胞の遊走を抑制するという報告が出たため(Eisenbarth et al, Nature, 2012)、われわれの保持している皮膚樹状細胞をマーキングできるマウスおよび試験管内実験系で、PYNOD 欠損マウスの樹状細胞の生体内の動態に獲得免疫反応低下の原因が無いかを解析することにした。	
【研究内容・成果】	】1. PYNOD 欠損マウスの生体内樹状細胞の動態解析 PYNOD 欠損(Pynod(-/-))マウス(須田教授より分与)を、われわれの保持している皮膚樹状細胞をマーキングできる2系統のトランスジェニックマウス、KRT14-Kitl-Tg(表皮にメラニンの蓄積が出る)KRT14-HGF-Tg(真皮にメラニンの蓄積が出る)に各々交配し、Pynod(-/-)Tgマウスを作製、生理的状態での皮膚から所属リンパ節への樹状細胞の遊走状況を、組織標本および皮膚自己抗原輸送量定量で評価した。その結果、表皮、真皮両方からの樹状細胞遊走には変化が見られず、PYNOD 欠損の影響の可能性は低いと考えられた。	
	した。GM-CSF および Flt3-li パルスし、OVA 特異的な TCR 解析した。その結果、Pynod と変わらず、また、分化誘導 定のサブセットが欠損してい 以上の結果から、Pynod(-/	細胞刺激能評価 間胞由来樹状細胞を試験管内で誘導し、T 細胞刺激能で機能を評価 gand で誘導した樹状細胞にオブアルブミン (OVA) を抗原としてを持つ CD4 T 細胞 OT-II を試験管内で刺激、増殖を指標に機能を (-/-)樹状細胞の T 細胞刺激能はヘテロのコントロール樹状細胞 算後の樹状細胞の細胞表面マーカー解析でも、Pynod(-/-)群で特 るなどの異常も見られなかった。 /-)マウスで見られる獲得免疫反応の低下に、樹状細胞の分化異 走低下が関わっているとは言い難いと現時点では結論した。
【成果等】	【主な論文発表】なし	
	Migration of skin antigen-t	Ackiniko, SHIMODA Yuhki, HIKOSAKA Mari, SUDA Takashi,
	【その他特筆事項】なし	

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

研究代表者 研究分担者 受入担当教員 【研 究 目 的】	がんの60%程度を占める。受象	一般共同研究 肺がん細胞の増殖・薬剤耐性における Ror1-Rif 経路の役割と HGF-Met 系との相互作用 神戸大学大学院医学研究科・准教授・西田満 神戸大学大学院医学研究科・教授・南康博 教授・松本邦夫 者数および死亡率の最も高いがんであり、中でも肺腺がんは肺
研究代表者 研究分担者 受入担当教員 【研 究 目 的】	所属・職名・氏名 所属・職名・氏名 職名・氏名 職名・氏名 肺がんは日本における死亡 がんの60%程度を占める。受	HGF-Met 系との相互作用 神戸大学大学院医学研究科・准教授・西田満 神戸大学大学院医学研究科・教授・南康博 教授・松本邦夫
研究分担者 受入担当教員 【研 究 目 的】	所属・職名・氏名 職名・氏名 肺がんは日本における死亡 がんの60%程度を占める。受怨	神戸大学大学院医学研究科・准教授・西田満 神戸大学大学院医学研究科・教授・南康博 教授・松本邦夫
研究分担者 受入担当教員 【研 究 目 的】	所属・職名・氏名 職名・氏名 肺がんは日本における死亡 がんの60%程度を占める。受	神戸大学大学院医学研究科・教授・南康博 教授・松本邦夫
受入担当教員【研究目的】	職名・氏名 肺がんは日本における死亡 がんの60%程度を占める。受	教授・松本邦夫
【研究目的】	肺がんは日本における死亡 がんの60%程度を占める。受	
2,7, 32, 7, 7, 7,	がんの60%程度を占める。受象	:者数および死亡率の最も高いがんであり、中でも肺腺がんは肺
【成果等】	とがない。 というない。 というない。 というない。 というない。 というない。 というない。 というない。 でいるが、 ないるい。 でいるが、 ないるい。 でいるが、 ないるい。 でいるが、 ないるに、 ない。 ないるに、 ない。 ないるに、 ないる。 ないるに、 ないる。 ないるに、 ないるに、 ないるに、 ないるに、 ないる。 ないるに、 ないるに、 ないるに、 ないる。 ないる。 ないる。 ないる。 ないる。 ないる。 ないる。 ないる。 ないる。 ないる。 ないる。 ないる。	PC-9 細胞の増殖に及ぼす影響を解析した。その結果、RorI KD、意に抑制した。また、Cdc42 KD も同様に細胞増殖を抑制したが、一ルと比べ増殖率に有意差は認められなかった。前述にように、PC-9 細胞の増殖には糸状突起は必要ではなるPT や Rif が浸潤に関与する可能性について検討するため、行った。その結果、RorI KD、Rif KD どちらも浸潤能を有意に抑。 if は PC-9 細胞の糸状突起形成、増殖、浸潤をそれぞれ促進して PRif による細胞機能制御の分子基盤を明らかにするため、細胞解析を行ったが、EGFR やその下流シグナル因子である Ras, Ral, Eは、RorI や Rif の KD によってほとんど影響を受けなかった。 かする細胞内代謝産物を同定するため、メタボローム解析を行って細胞内のポリアミン(プトレシン、スペルミジン)含量が減アミンはすべての生物に存在し、DNA 合成や遺伝子発現などを制殖を分化などに必須な役割を担っている。一般に、がん細胞でみからの取り込みが亢進しており、がん細胞におけるポリアミリといったがんの悪性進展に関与していると考えられている。現り代謝や取り込みを調節することで、肺腺がん細胞の悪性進展に検討している。 jii, M., and Minami, Y. Insight into the role of wnt5a-induced ancer cells. Int. Rev. Cell Mol. Biol. 314: 117-148, 2015. iyamoto, M., Okinaka, Y., Yamada, M., Hashimoto, R., Iijima, C., Nishinakamura, R., and Minami. Y. Role of Wnt5a-Ror2 of the metanephric mesenchyme during ureteric budding. Mol.

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

	研究区分	一般共同研究
		HGF-Met タンパク質間相互作用を制御するための計算科学的
	1917 BRING	な創薬基盤の確立
研究代表者	所属・職名・氏名	九州工業大学情報工学研究院・准教授・青木俊介
受入担当教員	職名・氏名	教授・松本邦夫
【研究目的】	本研究では、HGF-Met タンパ	
	 た。階層的結合シミュレーション	ンによる in silicoスクリーニング手法ならびに類縁化合物探索手法、
	- π 結合やスタッキング相互作用	目の予測法(PLIF/LI 法)等を駆使することで抗癌剤の標的となりうる
	HGF-Met のタンパク質間相互作用部位に結合する低分子化合物を探索するための計算科学的な創薬基盤	
	を確立する。最終的には、大規模な化合物立体構造ライブラリから計算科学的手法により HGF-Met のタ	
		高親和性の新規低分子化合物を複数種類同定することを目的とし、それ
		展開も視野に入れた創薬研究を展開する。
 【研究内容・成果】		
[つである HGF の立体構造に着目し、c-Met との分子間結合面に存在する
		ポケット構造 (窪み部分) を探索した。HGF の立体構造 PDB ID : 4K3J
		ない水素原子を付加するとともに電荷の付加を行った。分子表面抽出ツ
		ファンデルワールス表面上に水分子の仮想球を転がすことで HGF タンパ
		の分子表面構造から、ポケット構造探索ツールである sphgen を用い仮
		原子球のクラスター(仮想低分子化合物)が入り込める c-Met との結合
	面にあるポケット構造を複数同定した。グリッドドッキング手法に基づくドッキングシミュレーション	
	ツール DOCK ならびに遺伝的アルゴリズムに基づくドッキングシミュレーションツール GOLD 等からなる	
	階層的ドッキングシミュレーション手法を用いた in silico化合物スクリーニングを HGF 立体構造を標 的として行い、約46万化合物の3次元構造から構成される化合物構造ライブラリから HGF と結合し、	
		作用を阻害する可能性を有する低分子化合物を選定した。また、HGF分
		ケット全てに関してドッキングシミュレーションを行った。DOCK でのグ
		ニングにより約 46 万化合物から HGF と c-Met 受容体間の結合阻害化合 次に遺伝的アルゴリズムによる二次スクリーニング (GOLD)により一次
	スクリーニングによって選定された 2000 化合物の単一の初期配座のみを考慮した化合物構造に対して	
	結合シミュレーションを行い、44 化合物に絞り込んだ。さらに選定された 44 化合物の複数配座を1つ	
	福音シミュレーションを行い、44 化音物に絞り込んだ。さらに選定された 44 化音物の複数配座を1つ の化合物に対して最大で 10 配座を生成して、遺伝的アルゴリズムによる再シミュレーションを行い結	
	の化合物に対して最大で 10 配座を生成して、遺伝的アルコリスムによる再ンミュレーションを行い結 合エネルギースコアの再計算を行った。その後、フィルタリングとして PLIF 解析ならびに LI 解析を行	
	台エネルキースコアの再計算を行った。その後、フィルダリングとしてPLIF 解析ならのにLI 解析を行うとともにリピンスキーの法則等を考慮して、最終的に阻害化合物の候補を選定した。これら、選定さ	
		ンパク質間相互作用に対する阻害活性を松本研究室において主として以
		した。(1) 細胞ベースの Met 受容体リン酸化 ELISA アッセイ、(2)
	 FITC ラベル HGF を用いた Met の	直接結合系での阻害アッセイ、(3)Met 固定化ビアコアによる HGF を
	用いた Met の直接結合系における阻害アッセイ。最終的に他の複数の増殖因子とそれらの受容体への結	
	合は阻害せず HGF の Met への特異的相互作用を選択的に阻害し、HGF による Met のリン酸化も阻害しう	
	る新規低分子化合物を1種同定することが出来た。	
【成 果 等】	【主な論文発表】 Sakai K., Aoki S., Matsumoto K (2015)in press.	., Hepatocyte growth factor and Met in drug discovery. J. Biochem.
	【学会発表】	
	なし	
	【その他特筆事項】	
	なし	

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

	研究区分	一般共同研究
	研究課題	悪性乳癌幹細胞維持における転写因子 NF-κB の役割解明
研究代表者	所属・職名・氏名	東京大学・教授・井上純一郎
受入担当教員	職名・氏名	教授・後藤典子
【研究目的】	乳癌は遺伝子発現パターンや治療標的分子が異なるサブタイプに分類されることが知られている。研究代表者は、これまでに乳癌細胞株を用いて難治性の Basal-like サブタイプ乳癌特異的に NF-κB-JAG1-NOTCH 経路が、がん幹細胞の維持に関与していることを見出している。本研究では、この経路によるがん幹細胞の制御が臨床検体に由来する乳癌細胞でも存在することをサブタイプ特異性に着目して解析を行う。	
【研究内容・成果】	行った。また、0.1 グラム程度な培養を可能とする方法につゲナーゼ、とする方法につゲナーゼ、クーによって取り除き、一方な中であるとはかがから、上皮細胞や増殖をであるとはが多くで、増加しているのでは、Basal-like は Claudin-low サブタイプの性質を示すようし、JAG1 発現細胞とするとはおいて、場別には であるとの は し、JAG1 発現細胞との方とは で 、	サブタイプの性質を保持した培養法の確立を目的として検討を 度の検体が多いため、これまでよりもより少量の細胞から効率的 いても検討を行った。約0.1 グラムの検体をメスで細断し、コラ 、DNase で処理した。酵素で消化されなかった繊維等をフィル 遠心によって癌細胞をスフェロイドのまま回収した。このスフェ はれた培養ディッシュに播種し HuMEC 培地で培養をしたとこ た。従来の酵素処理によって得られた単一懸濁細胞を播種する 長期培養可能な腫瘍細胞が得られることが示唆された。次にサ に現のパターンを解析したところ、スフェロイドの状態では アカーである ESR1 や ERBB2・enriched サブタイプのマーカー る検体であっても培養後継代を数回繰り返すことで、これらのマ ike サブタイプのマーカーである FOXC1 の発現が亢進すること 重瘍では 3~5 回程度継代を繰り返すことで Luminal-like や カーである EpCAM の発現が低下し、Claudin-low サブタイプ 型が現れることが分かった。こういったサブタイプの変化は臨床 に性の発現に伴って見られることから、この培養法を用いること として継代回数ごとに異なるサブタイプの特徴を持った細胞を評 になった細胞株について TNFα処理により JAG1 の発現が亢進 またいたの発現には、これまでの検討から培養によって Basal-like になった細胞株について TNFα処理により JAG1 の発現が亢進 養によって NOTCH 刺激を加えることで乳癌幹細胞画分が増加 asal-like サブタイプの乳癌において NF-κB-JAG1-NOTCH シグ 日与する事が示唆された。
【成果等】	【主な論文発表】なし 【学会発表】なし 【その他特筆事項】	

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

		ん進展制御研究所 共同研究報告書
	研究区分	一般共同研究
研究課題		乳がん臨床検体スフィア培養を用いたドライバー変異の探索
研究代表者	所属・職名・氏名	東京大学医科学研究所先端医療研究センター・教授・東條有伸
受入担当教員	職名・氏名	教授・後藤典子
【研究目的】	申請者は、当研究所の後藤との共同研究にて、「初代乳癌細胞のスフェア培養」の系を立ち上げた(PNAS, 109, p6584, 2012)。本研究では、これを用いて、革新的ながん根治療法につながる分子標的を見いだすことを大きな目的とする。次世代シーケンサーを用いた解析に加えて、先端的バイオインフォマティクスも駆使して、ドライバー変異や、癌幹細胞のアキレス腱やハブとなる鍵分子を同定する。	
【研究内容・成果】	手術日に病院から2時間以内の研究室(東京大学医科学研究所・分子療法分野もしくは金沢がん研)へ新鮮臨床検体を氷冷状態で運搬する。東大病院、公立昭和病院、南町田病院からは、医科研へ搬送、金大病院からは金沢がん研へ搬送する。 検体を、酵素などで処理してシングルセルにし、ビーズ処理により、血球や間質細胞を取り除き、スフェア培養を行う。当日シングルセルにするのが困難な場合は、一旦接着培養させたのちに、数日以内にスフェア培養に持ち込む。残った組織は-80度で凍結保存し、後日、免疫不全マウスに移植するなどの実験を行う。 得られたドライバー変異候補分子のノックダウン並びに過剰発現系などによる評価を、臨床検体スフェア培養系や、PDXモデルを用いて、詳細に解析した。この系を用いて、がん幹細胞の安定化を司る候補分子の評価を行った。その結果、HER2/3-PI3 kinase-NF 「BPウエイは、がん幹細胞ニッチとして機能するがん細胞内に、IGF2サイトカインの産生を促すことがわかった。また、IGF2の受容体である IGF1 受容体(IGF1R)ががん幹細胞の性質を持った細胞に特異的に発現しており、IGF1Rシグナルをがん幹細胞内で活性化、その下流で未分化性のマスター調節因子である ID1 転写制御因子の発現を上昇させ、さらにその下流でIGF2 自身が産生されることがわかった。つまり、ポジティブフィードバックメカニズムにより IGF2-IGF1R-ID1-IGF2 サーキットが回転し、一旦これが回転しはじめるとがん幹細胞はこれに依存し安定化されることが明らかになった。	
	mechanism for stabilization シンポジウム』東京(20 ② Tominaga K, <u>Tojo A</u> , <u>Goto</u> breast cancer stem and nich ョップ、がん幹細胞研究 ③ Tominaga K, <u>Tojo A</u> , <u>Goto</u>	oh N 「HER/NF-κB induced IGF2 loop as a fundamental mechanism for the cell maintenance」 『第 37 回 日本分子生物学会年会 ワークシ この新展開:多様性と可塑性』横浜(2014年11月) oh N 「HER/NF-κB induced IGF2 loop as a fundamental mechanism for the cell maintenance」 『第 73 回日本癌学会学術総会 International

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

		ん進展制御研究所 共同研究報告書
	研究区分	一般共同研究
	研究課題	がん細胞の増殖における Mnk プロテインキナーゼと JSAP の機能的相互作用の解析
研究代表者	所属・職名・氏名	大阪薬科大学・教授・福永理己郎
研究分担者	所属・職名・氏名	大阪薬科大学・講師・藤井忍
受入担当教員	職名・氏名	大阪薬科大学・講師・藤井忍
【研究目的】	翻訳開始を制御する細胞内シグナル伝達系である mTOR 経路と Mnk 経路の相互作用における JSAP1/JLP の機能を明らかにすることを目的として本研究を計画した。近年、mTOR などの翻 訳促進分子を標的とするラパマイシン類縁体 (Everolimus など) による治療が開始され、がんの進展における翻訳制御経路の解明が重要な課題となっている。本研究では、がん治療において mTOR 経路と Mnk 経路の両者に対する阻害剤を併用する試みの分子的基盤を解明することを目的とした。	
【研究内容・成果】	がん細胞の増殖における Mnk1 の役割を解析するために、種々の細胞でヒト Mnk1 のノックダウンを行っている。ヒト Mnk1 に対する2種類の miR30-mimetic shRNA (Mnk1-5 および Mnk1-7)を設計し、HEK293T 細胞において内存生 Mnk1 の発現を効率良く抑制することを確認した。現在、Tet-on 応答プロモーターを有する pTMP ベクターを利用して2種類の shRNA を培養細胞に導入し、誘導的に Mnk1 のノックダウンを行う系を構築している。他方、米国の Dr. Platanias との共同研究によって、髄芽腫における mTOR 経路と Mnk 経路のクロストークについて解析し、Daoy 髄芽腫細胞をラパマイシンで処理すると eIF4E の Ser209 リン酸化が亢進することを見いだした。また、この mTOR 阻害によるフィードバックリン酸化は、MAP キナーゼや Mnk1 は関与しないにも関わらず、Mnk2 によって媒介されることも見いだした。さらに、Daoy 細胞を Mnks 阻害剤 CGP57380 で処理したり、siRNA によって Mnk2をノックダウンすることによって、細胞の mTOR 阻害自よるフィードバック制御を受けて MAP キナーゼ非依存的に Mnk2 を活性化する経路が存在することが明らかとなり、mTOR 阻害剤と Mnk 阻害剤の併用による髄芽腫 Daoy 細胞では mTOR 阻害によるフィードバック制御を受けて MAP キナーゼ非依存的に Mnk2 を活性化する経路が存在するとが明らかとなり、mTOR 阻害剤と Mnk 阻害剤の併用による髄芽腫治療の可能性が示唆された。Mnk2 が Mnk1 とは異なる機構で活性化されることから、これらの活性化機構と生理的機能の相違を明らかにする目的で、Mnk1 と Mnk2 のキメラ分子を作成した。現在、Mnk-ダブル KO 細胞を用いて Mnk1/2 の活性化動態を解析する細胞系を構築しており、この系を用いて解析を行う。 一方、MAP キナーゼの標的タンパク質の探索により、新たにプロテインホスファターゼ PTP9Q22 を同定した。PTP9Q22 はN末端側にチロシンホスファターゼドメインを有し、C末端側ドメインに複数の MAP キナーゼリン酸化部位が存在すると予想された。GST タグを結合させた PTP9Q22 を HEK293 細胞で発現させ、組換え PTP9Q22 を 精製し、p-ニトロフェニルリン酸を基質に用いて酵素活性の測定を試みたが、有意な脱リン酸化活性は検出されなかった。現在、種々のホスホチロシン含有ペプチドを用いてホスファターゼ活性を検討中である。	
【成果等】	種々のホスホチロシン含有ペプチドを用いてホスファターゼ活性を検討中である。 【主な論文発表】(1) Chevillard-Briet, M., Quaranta, M., Grézy, A., Mattera, L., Courilleau, C., Philippe, M. Mercier, P., Corpet, D., Lough, J., Ueda, T., Fukunaga, R., Trouche, D., Escaffit, F.: Interplay between chromatin-modifying enzymes controls colon cancer progression through Wnt signaling. Hum Mol Genet. 23 2120-2131 (2014) (2) Cendrowski, J., Sánchez-Arévalo Lobo, V. J., Sendler, M., Salas, A., Kuhn, JP., Molero, X., Fukunaga, R. Mayerle, J., Lerch, M. M., and Real, F. X.: Mnk1 is a novel acinar cell-specific kinase required for exocring pancreatic secretion and response to pancreatitis in mice. Gut 2014 Jul 18 (2014) (3) Eckerdt, F., Beauchamp, E., Belll, J., Iqbal, A., Su, B., Fukunaga, R., Lulla, R. R., Goldman, S., and Platanias L. C.: Regulatory effects of a Mnk2-eIF4E feedback loop during mTORC1 targeting of human medulloblastoma cells. Oncotarget, August 6, 2014, PMID: 25193863 (2014) (4) Panja D, Kenney JW, D'Andrea L, Zalfa F, Vedeler A, Wibrand K, Fukunaga R, Bagni C, Proud CG, Bramham CR.: Two-stage translational control of dentate gyrus LTP consolidation is mediated by sustained BDNF-TrkB signaling to MNK. Cell Rep. 2014 Nov 20;9(4):1430-45. doi: 10.1016/j.celrep.2014 【学会発表】 マウスロイシンリッチα2グリコプロテインとシトクロム cの相互作用:中村舞音、松木有紗、矢野可央里、藤井忍、福永理己郎、池田潔、井上晴嗣、第87回日本生化学会大会,2P-098 (201年10月,京都)	

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

	平成 26 年度 金沢大学がん	レ進展制御研究所 共同研究報告書 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
研究区分		一般共同研究
研究課題		Hedgehog シグナルを介した癌転移制御機構に関する研究
研究代表者	所属・職名・氏名	広島大学 原爆放射線医科学研究所・助教・上田健
受入担当教員	職名・氏名	教授・善岡克次
【研究目的】	近年の臨床検体を用いた遺伝子発現解析、ならびに遺伝子改変マウスを用いた解析から Hedgehog (Hh) シグナル経路活性化とヒト腫瘍 (神経膠芽種、基底細胞癌、悪性黒色腫など) の 病態との関連が示唆される。Hh リガンドがその受容体 Patched に結合すると、転写因子 GLI ファミリー(glioma-associated oncogene family zinc finger 1-3) の細胞質から核内へ移行が促進され、標的遺伝子の発現が誘導される。GLI ファミリーには、活性型(GLI-1,2)、抑制型(GLI-3) が存在し、各々の GLI ファミリー遺伝子の機能ならびに標的遺伝子群を明らかにすることは、Hh シグナルを介した癌進展機構の解明及びこの経路を標的とした治療法の開発にも有用であると考えられる。本研究では、特に、癌転移に着目し、GLI の下流で制御される標的遺伝子群の網羅的な解析を行う。	
【研究内容・成果】	現させた株を善岡研究室にお進するという知見を得た。 そこで本研究では、GLI-1高系能力を得たの分子基盤についてアンをであるとして、の力を見を表現解析を登りたる。 を記した。とのは、GSEA)で、発現が表現が表現が表現が表現が表現が表現が表現が表現が表現が表現が表現が表現が表現	Some in the image is a content of the im
【成 果 等】	J, <u>Ueda T</u> , Fukunaga R, Trouche D cancer progression through Wnt sig 【学会発表】 <u>上田 健</u> , 長町安希子,中田雄一島	Grézy A, Mattera L, Courilleau C, Philippe M, Mercier P, Corpet D, Lough D, Escaffit F. "Interplay between chromatin-modifying enzymes controls colon naling." Hum Mol Genet. 2014;23(8):2120-31. 邓, 山崎憲政, 松井啓隆, 本田浩章 Disease-associated EED Ile363Met ity to hematologic malignancies 第 87 回日本生化学会大会(ポスター)

	研究区分	一般共同研究
	研究課題	膵がんエクソソームと GSK3β の交絡的病理作用の解明とがん
		治療薬スクリーニングへの応用
研究代表者	所属・職名・氏名	金沢医科大学総合医学研究所・准教授・島崎猛夫
研究分担者	所属・職名・氏名	金沢医科大学総合医学研究所・教授・石垣靖人
	所属・職名・氏名	金沢医科大学総合医学研究所・研究員・辰野貴則
受入担当教員	職名・氏名	教授・源利成
【研究目的】	これまでの共同研究により)我々は、glycogen synthase kinase(GSK)3βが消化器癌に共
	する治療標的であることを	提唱してきている。また近年、癌細胞が分泌するエクソソー
	(exosome) が癌の転移にお	いて重要な役割を担っている可能性が示唆されている。なかで
	膵癌は強度の浸潤、転移性と	と各種治療に抵抗する難治癌であるため、我々が樹立したエク
	ソーム可視化膵癌細胞株と新	新たに開発した連結式培養プレート(NICO-1)を用いて、エクソ
	ームの動態及びエクソソームが周囲の細胞に与える影響と、GSK3βを含む各種キナーゼ	
	薬等の影響について検討する	3ことを目的とした。
	の形成数が低下したことからに、薬剤スクリーニングの過細胞内にびまん性に GFP がな	xが6細胞を J Biol Chem 2013)などの分子が同定されている程度 時に観察す ある。そこで我々は、e-PANC1を用いて、まず各種薬

これらの結果をもとにさらなる分子機構を解析する。

【主な論文発表】 なし(論文作成準備中)

【学会発表】

なし

なし (2015年度に予定)

【その他特筆事項】

【成 果 等】

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

	平成 26 年度 金沢大学が	ん進展制御研究所 共同研究報告書
	研究区分	一般共同研究
	研究課題	質量分析型迅速がん診断システムを用いた大腸がんの新規診
		断法の開発と発がんメカニズムの解明
	所属・職名・氏名	山梨大学・助教・吉村健太郎
研究代表者	所属・職名・氏名	山梨大学・教授・竹田扇
	所属・職名・氏名	早稲田大学・招聘研究員・田邉國士
受入担当教員	職名・氏名	教授・源利成
【研究目的】	能な装置 (PESI-2020) を用いする。 またシステム開発の中で得ん組織のマススペクトルを続を炙り出し、発がんメカニズ	型製作所で共同開発した極微量の検体を大気圧下で質量分析が可いて、大腸がん検体の迅速診断システムを構築することを目的と よられたデータベースに存在する、大腸の非がん部粘膜及び、が ご計解析することで、大腸がん特異的な生体分子のプロファイル ムの解明や、治療法開発の基盤を形成することを目的とする。
【研究内容・成果】	得られた成果と今後の展望 (1) 大腸組織の測定条件検討:大腸検体からイオン強度の高いマススペクトルを再現性良く取得可能な条件の検討を行った。種々の溶媒を検討したところ、約2mm角の組織を100μlの50%エタノールで破砕後、遠心上清を測定することで目的とするクオリティーのマススペクトルを得ることが可能となった。 (2) 多数検体の測定とデータベースの構築:79 患者より得られた非がん部及びがん部検体を質量分析し、1580スペクトルからなるデータベースを構築した。また、種々の患者情報をラベル化し、マススペクトルに連結した関係データベース(RDB)を構築した。RDBが構築されたことで、上記2つの目的夫々に応じた解析が可能となった。 (3) 統計解析:今回得られたマススペクトルデータは一つが20,000項目からなるため、統計解析を用いて非がんとがんの差異を比較した。統計解析を行う目的は大きく二つに分けられ、一つはマススペクトルのデータを基に、非がんとがんを判別(診断)することである。もう一方は、がん部で特異的に変化するピーク(がんマーカー)の検出である。・がん診断:得られたマススペクトルを主成分分析で比較したところ、非がん部とがん部それぞれがクラスターを形成することが明らかとなった(図1)。現在更に判別分析を用いて、盲検検体の非がん/がんを診断するシステムの構築を進めている。・マーカー探索:非がん部およびがん部より得られたマススペクトルを比較したところ、がん部特異的に発現量が増加/減少するピークを見いだした(図2)。今後は有意差検定を行い、がんマーカーとなりうるターゲットピークを決定し、さらに分子の同定を試みる。	
	図1、スペクトルの主成分分析 #がん部とがん部それぞれが 特徴的なクラスターを形成している 40 20 -20 -20 -20 -20 -20 -20 -20 -20 -20	
【成果等】	【主な論文発表】 なし 【学会発表】	
	なし 【その他特筆事項】 なし	

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

	平成 26 年度 金沢大学が	ん進展制御研究所 共同研究報告書
	研究区分	一般共同研究
	研究課題	大腸がんにおける Wnt 経路標的分子 CRD-BP の分子病理学的特
		性と病態の解明
研究代表者	所属・職名・氏名	金沢医科大学・教授・小坂健夫
	所属・職名・氏名	金沢医科大学・准教授・木南伸一
研究分担者	所属・職名・氏名	金沢医科大学・講師・藤田秀人
	所属・職名・氏名	金沢医科大学・大学院・大西敏雄
	所属・職名・氏名	金沢医科大学・大学院・富田泰斗
受入担当教員	職名・氏名	教授・源利成
【研究目的】	役割は研究途上である。本研タをもとに、がん組織におけるdeterminant-binding protein) どを総合的に比較解析する。こ	でも Wnt 経路の活性化は重要であるが、そのがん病態における 究では、これまでの共同研究で集積してきたがん組織検体とデー ββ-カテニン/Tcf 複合体の転写標的分子 CRD-BP (coding region の発現を調べ、既知のがん関連分子の異常や臨床病理学的因子な これにより、CRD-BP が大腸がんの病態、進行度や治療後経過の分 がんにおける Wnt 経路の病理作用の一端を明らかにすることを目
【研究内容・成果】	【背景】大腸癌細胞において CRD-BP は β-catenin と IκBα (inhibitor of nuclear factor-κB α) に 共通の E3 ユビキチン連結酵素 β-TrCP1 (β-transductin repeats-containing protein)、c-myc、IGF-II (insulin-like growth factor-II)の mRNA を安定化するトランス因子であり、β-catenin により 発現誘導されることを見出した。これまでに、少数例の大腸癌や卵巣癌を対象に CRD-BP の発現解析が報告されているが、癌病態との関連は明らかではない。本研究では、ヒト大腸癌における CRD-BP の発現が複数の細胞増殖経路を誘導すると仮定し、mRNA レベルでの分子発現の 関連性や臨床病理学的因子と比較解析することで、CRD-BP が癌病態の分子指標になるかを 検討した。	
	【方法】 ヒト大腸癌摘出検体 74 例の腫瘍及び正常粘膜の新鮮組織検体から cDNA を調製し、RT-PCR を用いて標的遺伝子 CRD-BP、 β -TrCP1、c-myc と IGF-II の発現解析を実施し、GAPDH を内部対照とした $\Delta\Delta$ Ct 法により相対的に評価した。統計解析は T 検定、 χ^2 検定を用いて解析し、 p < 0.05 を有意差ありとした。	
	c-myc: 21%、と IGF-II: 18% c-myc (p= 0.0006) の発現にななる相関が認められたが、IGF β-TrCP1 が年齢で p= 0.01 と高症例で高値であった。 IGF-II CRD-BPと c-myc は病理学的【まとめ】大腸癌において β-cの発現を介して腫瘍の増殖を	内遺伝子別の発現高値症例は CRD-BP: 23%、 β -TrCP1: 28%、であった。分子発現の関連性は、CRD-BP と β -TrCP1 (p=0.004)、有意差を認め、CRD-BP 発現高値群で β -TrCP1 と α -c-myc は高値と α -II との相関関係はなかった。臨床病理学的因子との解析では、高年齢では発現高値となり、進達度で α -0.02 と SS 以深と進行した は直腸癌で α -0.01 となり、結腸癌よりも直腸癌で高値となった。 α -CBD-BP は、 α -CBD-BP は、 α -CBD-BP は、 α -CBD-BP は、 α -CBD-BP の発標となりうる可能性があることが示唆された。
【成 果 等】	現は深達度や病期の分子指標となりうる可能性があることが示唆された。 【主な論文発表】 1. 舟木洋, 三浦聖子, 森岡絵美, 甲斐田大資, 大西敏雄, 大野由夏子, 富田泰斗, 野口美樹, 藤田秀人, 木南伸一, 中野泰治, 上田順彦, 小坂健夫: 進行・再発食道癌における Biweekly Docetaxel / Nedaplatin 併用療法の検討, 癌と化療, 41:2384-2386, 2014. 2. K.Matsunaga, R.Hayashi, T.Otsuka, D.Kaida, N.Ueda, T.Kosaka, T.Arisawa: A case of IgG4-related disease complicated by duodenal bulbitis with IgG4-positive plasma cell infiltration, Endoscopy, 46:E408-E410, 2014. 3. 大西敏雄, 上田順彦, 小坂健夫, 中田聡子, 湊宏: 無治療で1年4カ月の経過観察後に治癒切除し得た intraductal papillary neoplasm of bile duct (IPNB) の1例, 胆道, 28:81-88, 2014. 4. 上田順彦, 甲斐田大資, 富田泰斗, 大西敏雄, 舟木洋, 藤田秀人, 木南伸一, 中野泰治, 小坂健夫: 長期生存が得られた16番リンパ節転移陽性 IPMN 由来浸潤癌の1例, 癌と化	

【学会発表】

- 1. Tomita Y, Miura S, Fujita J, Morioka E, Kaida D, Oonishi T, Oono Y, Noguchi M, Funaki H, Fujita H, Kinami S, Nakano Y, Ueda N, Kosaka T, Minamoto T. Expression and clinical relevance of CRD-BP in colorectal cancer. The 8th International Conference of the International Society of Gastroenterological Carcinogenesis: Symposium 2 "New Frontier in Cancer Genome Research", November 13th~14th, 2014, Hotel Nikko Fukuoka, Fukuoka, Japan.
- 2. 富田泰斗, 三浦聖子, 藤田 純, 森岡絵美, 甲斐田大資, 大西敏雄, 大野由夏子, 野口美樹, 舟木洋, 藤田秀人, 木南伸一, 中野泰治, 上田順彦, 小坂健夫, 源 利成. 大腸癌における CRD-BP の発現と臨床病理学的因子との関連. 第 25 回日本消化器癌発生学会総会:シンポジウム2「がんゲノム研究の新展開」, 2014 年 11 月 13 日, 14 日, ホテル日航福岡, 福岡.
- 3. T.Kosaka, J.Fujita, Y.Tomita, T.Onishi, S.Kinami: A Conversuin Gastrectomy for Patients with Initially Unresectable Stage VI Gastric Cancer Provides Survival Benefit., 11th International Conference of the Asian Clinical Oncology Society, (Taipei, '14.05).
- 4. Y.Tomita, S.Kinami, S.Miura, J.Fujita, E.Morioka, D.Kaida, T.Onishi, Y.Ono, M.Noguchi, H.Funaki, H.Fujita, Y.Nakano, N.Ueda, T.Kosaka, T.Minamoto: The Expression and the Clinical Role of the CRD-BP, the Transcriptional Target of the β-Catemin in the Wnt Signaling Pathway, in the Colorectal Cancer, 11th International Conference of the Asian Clinical Oncology Society, (Taipei, '14.05).
- 5. 富田泰斗,藤田秀人,藤田純,甲斐田大資,大西敏雄,舟木洋,木南伸一,中野泰治,上田順彦,小坂健夫,黒瀬望,湊宏:当院における内分泌細胞腫瘍の7 例の検討,第80回大腸癌研究会,(東京,14.01),第80回大腸癌研究会プログラム・抄録集,88,2014.
- 6. 富田泰斗,藤田秀人,三浦聖子,藤田 純,森岡絵美,甲斐田大資,大野由夏子,大西 敏雄,野口美樹,舟木 洋,木南伸一,中野泰治,上田順彦,小坂健夫:当院における大 腸癌肺転移切除症例の検討,第36回日本癌局所療法研究会,(八尾,14.06),第36回 日本癌局所療法研究会プログラム・抄録集,96,2014

【その他特筆事項】

なし

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

		An. U. 🖂 Titl da
	研究区分	一般共同研究
研究課題		Nestin のリン酸化制御による,膵癌分子標的治療の開発
研究代表者	所属・職名・氏名	東京都健康長寿医療センター病理診断科・医長・松田陽子
	所属・職名・氏名	東京都健康長寿医療センター病理診断科・部長・新井冨生
研究分担者	所属・職名・氏名	東京都健康長寿医療センター老年病理学研究チーム・部長・田 久保海誉
	所属・職名・氏名	日本医科大学統御機構診断病理学・准教授・石渡俊行
受入担当教員	職名・氏名	教授・源利成
【研究目的】	膵癌は極めて予後不良であ	。り,新規分子標的治療薬の開発が望まれている。申請者らは、
	中間径フィラメントタンパク	質の nestin について、膵癌の治療標的としての有用性を検討し、
	浸潤性膵管癌の 30%の症例で	で nestin の発現を細胞質内に認め、その発現が膵癌の浸潤や転移
	と関連することを明らかにし	た。Nestin は、細胞骨格タンパク質として細胞の形態や運動性に
	関与するとともに、様々なタ	ンパク質の発現量や活性化、翻訳後修飾に関与することが報告
	されている。本研究では、膵疹	癌における nestin のリン酸化を抑制することで nestin の機能を効
	果的に制御することが可能に	なるとの仮説に基づき、nestin のリン酸化制御による新たな膵癌
	治療法の開発を目指す。	
【研究内容・成果】	ヒト膵癌培養細胞株におい	て、リン酸化 nestin は M 期の細胞に強く発現を認め、その発現
	は細胞増殖と関連を示した。Nestin 発現ベクターと、nestin リン酸化部位に変異を加えてリ	
	ン酸化を阻止したベクターを	作成し、膵癌培養細胞株に遺伝子導入した。Wild type の nestin
	発現ベクターを遺伝子導入すると増殖と遊走、浸潤が亢進した。一方、リン酸化部位に変異を加えた nestin を遺伝子導入した細胞では、増殖、遊走、浸潤、転移が抑制された。リン酸化 nestin を	
	制御する上流の機構について検討したところ、 cyclin dependent kinase, AKT, Aurora の阻	
	害剤にて nestin のリン酸化が阻害された。以上の結果より、リン酸化 nestin を制御すること	
	は膵癌の分子標的として有用	な可能性が示された。以上の結果は論文投稿中である。
【成 果 等】	【主な論文発表】 1. Matsuda Y, Ishiwata T, Yoshimura H, Hagio M, Arai T. Inhibition of nestin suppresses stem cell phenotype of glioblastomas through the alteration of post-translational modification of heat shock protein HSPA8/HSC71. Cancer Lett. 2015 357:602-11. 2. Matsuda Y, Ishiwata T, Izumiyama-Shimomura N, Hamayasu H, Fujiwara M, Tomita K, Hiraishi N, Nakamura K, Ishikawa N, Aida J, Takubo K, Arai T. Gradual telomere shortening and increasing chromosomal instability among PanIN grades and normal ductal epithelia with and without cancer in the pancreas. PLoS One. 2015 10:e0117575.	
	松田陽子、石渡俊行、吉村久	志、源利成、新井富生。 膵癌におけるリン酸化 nestin の役割 ポジウム・共同利用共同拠点シンポジウム. 2015. 金沢

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

	可索尼八	加井戸江安
研究区分 研究課題		一般共同研究
	1	がん細胞の上皮・間葉転換におけるヒストンの翻訳後修飾の解析
研究代表者	所属・職名・氏名	東京工業大学・教授・木村宏
受入担当教員	職名・氏名	教授・鈴木健之
【研究目的】	機能を解析し、エピゲノム異とする。そのために、申請者 モノクローナル抗体を用いて ベルでのグローバルなヒスト	月与するヒストンのメチル化・脱メチル化酵素群の細胞生物学的 会常によるがんの発症と悪性化の分子機構を解明することを目的 たらが開発したヒストンの翻訳後修飾特異的、修飾部位特異的な 、ChIP sequence 法などによるエピゲノム解析と、個々の細胞レ ン翻訳後修飾の動態解析を行う計画である。特に、がんの悪性 伝換(EMT)における新しいエピジェネティックな制御機構を明 る。
【研究内容・成果】	】 ヒストン H3 のメチル化修飾部位のうち、遺伝子の発現制御に重要な4番目の Lys 残基(K4)、および K9、K27、K36、K79 について、それぞれのメチル化修飾の状態を特異的に認識するマウスモノクローナル抗体の作製を遂行した。また、アセチル化、リン酸化など他の翻訳後修飾とメチル化修飾が併存する状態を認識する抗体についても開発を進行した。作製した抗体を用いて、正常細胞とがん細胞、あるいは悪性度の異なるがん細胞を比較しながら、個々の細胞レベルでのグローバルなヒストン修飾のダイナミクスを解析した。特に、がんの悪性進展過程に重要な上皮・間葉転換(EMT)のプロセスにおいて、ヒストンのメチル化修飾の変化を調べ、その分子メカニズムを解析することを試みた。がん細胞の悪性進展過程のモデルとして、A549 肺がん細胞株が TGF-□sta 処理によって、上皮・間葉転換(EMT)を誘導される実験系に着目した。これらの特異的修飾認識抗体を用いて、EMT 誘導前後の個々の細胞レベルでのヒストン H3 の翻訳後修飾の変化を調べた。その結果、ヒストン H3K27 のトリメチル化(me3)レベルの著しい上昇を検出することができた。次に、ヒストン H3K27 メチル化修飾を担う酵素群である PRC2 および PRC1 複合体の細胞内動態(複合体構成、細胞内局在、翻訳後修飾など)の解析をスタートした。これまでに、PRC2複合体の構成要素である EED と、複合体のアクセサリー因子である JARID2 が、EMT 誘導プロセスにおける PRC2 の標的遺伝子へのリクルートとヒストンメチル化の制御に、重要な役割を果たしていることを見いだした。今後も、こうした酵素複合体の解析を通じて、EMT プロセスにおける動的クロマチン構造制御の分子基盤を解明していきたいと考える。	
【成 果 等】	migration and invasion. Me Hayashi-Takanaka Y, Stasev chemical fluorescent dyes a One 9, e106271 (2014) Stasevich TJ, Sato Y, Noza	imura H. Histone modifications associated with cancer cell ethods Mol Biol 1238, 301-317 (2015). ich TJ, Kurumizaka H, Nozaki N, and Kimura H. Evaluation of as a protein conjugation partner for live cell imaging. PLoS ki N, and Kimura H. Quantifying histone and RNA polymerase fication dynamics in mother and daughter cells. Methods 70,

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

研究に表者		TT 40 1 1	「ん進展制御研究所 共同研究報告書 「
研究日			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
一次			
「研究目的」 乳管におけるゲノムの変化では、点変異や転座とともに「遺伝子増幅」が普遍的に観察される。複数の遺伝子が増幅する遺伝子増幅では、塩基血列情報や変異験出頻度だけから、周辺歯伝子や特定することは国職であらは、鬼痛絶の遺伝子神解では、ケンプリコン)からドライバー遺伝子とサポーター遺伝子を検定する新しいシステムを構築し、細胞レベルでの様々な遺伝子機能評価系を確立してきた。木共同研究では、アンプリニン機構度低子の過剰免現を特別とするin vitro およびin vivo 遺伝子腫所系を利用し、遺伝子増幅による乳癌の発症却は悪性化の過程をエピケノム変化の側面から解析することを目的とする。 【研究内容・成果】	研究代表者	所属・職名・氏名	早稲田大学・教授・仙波憲太郎
加え、複数の遺伝下が均幅する遺伝下増幅では、塩基配列情報や変異核山頻度だけから、原 図遺伝子を特定することは困難である。申請者らは、乳癌組織の遺伝子増幅領域(アンプリコン)からドライバー遺伝子と中ボーター遺伝子を体系的に同定する新しいシステムを構著 し、細胞レンルでの様々な遺伝子機能評価係を確してきた。木実同研究では、アンプリニン候補遺伝子の過剰発現を特を力きいい。 はまび in vivo 遺伝子形価系を和用し、遺伝子増幅による乳癌の発症および悪性化の遺経をエピゲノム変化の側面から解析することを目的とする。 とする。 【研究内容・成果】 「投水は in vivo n in vivo の癌化能の様々な評価系を用いて、乳癌に観察される遺伝子増幅領域(アンプリコン)から、複数のが人遺伝子候補(ADDRA2B, TBX2, RARA など)を同定することに成功した。これらの遺伝子が影響を影発する過程で、細胞にどのようなエピゲノムマイトに調べ、乳癌がした。とは成功した。これらの遺伝子が影響を影発する過程で、細胞にどのようなエピゲノムなどの情報を収集して、シースが必定を選がして、また。具体的には、がん遺伝子を導入して乳体とを制いて、DNA メチル化アレイおよびヒストン後齢前体によるCHP シークエンス発症とを用いて、DNA タチル化ドレストンの制態後齢的変化をグノムワイドに調べ、乳を近くが 選性化におけるエピゲノム異常を包括的に解析することにした。また、がん遺伝子を導入した乳体をデデルやウェから生じた。制能といかでもエピゲノム異常として、飲み選供の生物を収集して、飲養の変化を対して、またずの実験が、エピジェネティック制御に関サする数十種類の酵素群(DNA タチル化・酸メチル化酵メ、セストンメデル化・酸メチル化酵素など)の発現や動態の変化を覚を使い、発表が動物に関かるとして、また、エボラインの乳焼を動物でした。これにの実施の変化を覚を使い乳糖素に発動が変化する酵素や、健飲素制激後の乳焼細胞体において発現変化が顕著に発動が変化する酵素や、健飲素制激後の乳焼細胞体において乳が皮が腫という現れが変化する酵素や、健飲素制激後の乳焼細胞体において、これらの酵素の発動を強制発乳やソックグウンによって変化させると、短輪の脱性を過程において、これらの酵素の発動を強制発乳やソックグウンによって変化させると、短輪の脱性を調整をいて、これらの酵素の発動を強力を必要を含えることを見いだした。こうした結果をあまえて、乳焼の砂片を埋造を脂肪が洗した。こうした結果をあままで、乳焼の砂片を埋造を高いないで、これの砂片を開発をかままで、現場のので、2015 Febrografia Hamanary (Gand, RARA) induces epithelial-to-mesenchymal transition and disraption of mammary acina structures、Mol Oncol 2015 Febrografia Hamanary (Gand, POST-TRANSLATION M. Receptor Alpha (RARA) Overexpression Induce Fipiterial-to-Mesenchymal Transition (EMT) and Malignant Tumor Progression with EBB2 in Mammary Gland, POST-TRANSLATIONAL REGULATION OF CELL SIGNALING, San Diego USA ・ Matsui A、et al., Identification and fructional analysis of INFIB as a Novel Oncogene POST-TRANSLATIONAL REGULATION OF CELL SignALING, San Diego USA ・ Matsui A、et al., Identification and fructional analysis of INFIB as a Novel Oncogene POST-TRANSLATION AL COV			
に成功した。これらの遺伝子が発売を誘発する過程で、細胞にどのようなエピゲノン変化を誘導するのかを調べる研究計画を立楽した。具体的には、が心遺伝子を導入する前後の新胞において、DNA メチル化アレイおよびにストン修飾抗体による ChIP シークエンス法などを用いて、DNA のメチル化とヒストンの翻訳後修飾の変化をゲノムワイドに調べ、乳癌発症悪性化におけるエピゲノム異常を包括的に解析することにした。また、がん遺伝子を導入した乳癌モデルマウスから生じた乳癌についてもエピゲノム変化の情報を収集して、比較解析を行うことにした。 ららに、エピジェネティック制御に関与する数十種類の酵素群 (DNA メチル化・脱メチル化酵素、ヒストンメチル化・脱メチル化酵素が の発現や動態の変化を定量 PCR や特異的抗体による免疫染色、ChIP 法で解析することで、乳癌発症および悪性健康をエピジェネティック制御機構の破綻という視点から解析した。これまでの実験から、エビジェネティック制御に関与する数十種類の酵素群の変化を定量 PCR や特異的抗体による免疫染色、ChIP 法で解析することで、乳癌発症および悪性健康の高い乳癌として知られるトリプルネガティブ型乳癌で顕著に発現が変化する酵素や、健酸素刺激後の乳癌細胞株において変現変化が顕著に跨導される酵素を同定した。乳癌細胞株において、これらの酵素の変現を強制発現やノックゲウンによっ変化きせると、癌幹細胞体において、これらの酵素の変現を強制発現やノックゲウンによっ変化きせると、癌幹細胞様がで質を有するスフィアの形成能に影響を与えることを見いだした。こうした結果をふまえて、乳癌の悪性進展過程における酵素の役割と分子レベルでの作用機序について、さらに詳細な解析を進行中である。 【主な論文発表】 ・ Doi A、Ishikawa K、Shibata N、Ito E、Fujimoto J、Yamamoto M、Shiga H、Mochizuki H、Kawamura Y、Goshima N、Semba K*、Watanabe S、Enhanced expression of retinoic acid recepto alpha (RARA) induces epithelial-to-mesenchymal transition and disruption of mammary acina structures、Mol Oncol. 2015 Feb;9(2):355-64(*corresponding author)・Ito-Kureha T、Koshikawa N、Yamamoto M、Semba K、Yamaguchi N、Yamamoto T、Seiki M、Inoue J、Tropomodulin 1 expression driven by NF-κB enhances breast cancer growth, Cancer Res 2015 Jan 1:75(1):62-72. 【学会発表】 ・ Ishikawa K、et al.、Retinoic Acid Receptor Alpha (RARA) Overexpression Induce Epitherial-to-Mesenchymal Transition (EMT) and Malignant Tumor Progression with ERBB2 in Mammary Gland, POST-TRANSLATIONAL REGULATION OF CELL SIGNALING, San Diego, USA ・ Matsui A、et al. Identification and fuctional analysis of HNFIB as a Novel Oncogene POST-TRANSLATIONAL REGULATION OF CELL SIGNALING, San Diego, USA ・ 松井貴香 他、上皮細胞を用いたアンプリコントパルでのでは用機を開かれているよどが表的では関するとようないのでは、発生を表が、といれている		れる。複数の遺伝子が増幅する遺伝子増幅では、塩基配列情報や変異検出頻度だけから、 因遺伝子を特定することは困難である。申請者らは、乳癌組織の遺伝子増幅領域(アンプコン)からドライバー遺伝子とサポーター遺伝子を体系的に同定する新しいシステムを構し、細胞レベルでの様々な遺伝子機能評価系を確立してきた。本共同研究では、アンプリン候補遺伝子の過剰発現を特徴とする in vitro および in vivo 遺伝子評価系を利用し、遺伝増幅による乳癌の発症および悪性化の過程をエピゲノム変化の側面から解析することを目	
・Doi A., Ishikawa K., Shibata N., Ito E., Fujimoto J., Yamamoto M., Shiga H., Mochizuki H. Kawamura Y., Goshima N., Semba K*., Watanabe S., Enhanced expression of retinoic acid recepto alpha (RARA) induces epithelial-to-mesenchymal transition and disruption of mammary acina structures, Mol Oncol. 2015 Feb;9(2):355-64.(*:corresponding author) · Ito-Kureha T., Koshikawa N., Yamamoto M., Semba K., Yamaguchi N., Yamamoto T., Seiki M. Inoue J., Tropomodulin 1 expression driven by NF-κB enhances breast cancer growth, Cancer Res 2015 Jan 1;75(1):62-72. 【学会発表】 · Ishikawa K., et al., Retinoic Acid Receptor Alpha (RARA) Overexpression Induce Epitherial-to-Mesenchymal Transition (EMT) and Malignant Tumor Progression with ERBB2 in Mammary Gland, POST-TRANSLATIONAL REGULATION OF CELL SIGNALING, San Diego USA · Matsui A., et al., Identification and fuctional analysis of HNF1B as a Novel Oncogene POST-TRANSLATIONAL REGULATION OF CELL SIGNALING, San Diego, USA · 松井貴香 他,上皮細胞を用いたアンプリコン 17q12-21 のスクリーニングによる新規がA	【研究内容・成果】	(アンプリコン)から、複数のがん遺伝子候補(ADORA2B, TBX2, RARA など)をとに成功した。これらの遺伝子が発癌を誘発する過程で、細胞にどのような工程を誘導するのかを調べる研究計画を立案した。具体的には、がん遺伝子を導入す胞において、DNAメチル化アレイおよびヒストン修飾抗体によるChIPシークを用いて、DNAのメチル化とヒストンの翻訳後修飾の変化をゲノムワイドに調べ悪性化におけるエピゲノム異常を包括的に解析することにした。また、がん遺伝た乳癌モデルマウスから生じた乳癌についてもエピゲノム変化の情報を収集してを行うことにした。さらに、エピジェネティック制御に関与する数十種類の酵素チル化・脱メチル化酵素、ヒストンメチル化・脱メチル化酵素など)の発現や動定量PCRや特異的抗体による免疫染色、ChIP法で解析することで、乳癌発症が展をエピジェネティック制御機構の破綻という視点から解析した。これまでの実験から、エピジェネティック制御に関与する数十種類の酵素群の度の高い乳癌として知られるトリプルネガティブ型乳癌で顕著に発現が変化する酸素刺激後の乳癌細胞株において発現変化が顕著に誘導される酵素を同定した。において、これらの酵素の発現を強制発現やノックダウンによって変化させると様の性質を有するスフィアの形成能に影響を与えることを見いだした。こうしたえて、乳癌の悪性進展過程における酵素の役割と分子レベルでの作用機序につい	
・公地将大 他, 17q23 アンプリコンにおける新規トランスフォーミング遺伝子 TBX2 の機能解		・Doi A., Ishikawa K., Shibar Kawamura Y., Goshima N., Se alpha (RARA) induces epithe structures, Mol Oncol. 2015 Feb Ito-Kureha T., Koshikawa N Inoue J., Tropomodulin 1 expr 2015 Jan 1;75(1):62-72. 【学会発表】 ・ Ishikawa K., et al., Re Epitherial-to-Mesenchymal Tra Mammary Gland, POST-TRAN USA ・ Matsui A., et al., Identific POST-TRANSLATIONAL REC ・松井貴香 他,上皮細胞を見遺伝子 HNF1B の同定とその機	mba K*, Watanabe S., Enhanced expression of retinoic acid receptor elial-to-mesenchymal transition and disruption of mammary acinar b;9(2):355-64.(*:corresponding author) 1., Yamamoto M., Semba K., Yamaguchi N., Yamamoto T., Seiki M., ession driven by NF-κB enhances breast cancer growth, Cancer Res. 1. Property of the second of the

・小林 舜 他,遺伝子機能解析に用いるマウス乳腺組織構築系の開発,第37回日本分子生物学会年会、横浜

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

- ・公地将大 他,17q23 アンプリコンにおける推定がん遺伝子 TBX2 のトランスフォーミング活性,第73回日本癌学会学術総会、横浜
- ・細川義人 他, In vivo スクリーニングによるがん遺伝子の同定,第73回日本癌学会学術総会、横浜
- ・藤元次郎 他,プリン受容体ファミリー遺伝子 P2Y6 の ERBB2 に依存した細胞癌化能の同定及び解析,第 18 回日本がん分子標的治療学会学術集会、仙台
- ・伊原辰哉 他、ヒト完全長 cDNA クローンを用いた in vivo スクリーニングシステムの確立 とそれを用いたがん遺伝子の同定、第18回日本がん分子標的治療学会学術集会、仙台
- ・松井貴香 他,上皮細胞株を用いたアンプリコン 17q12-21 のスクリーニングによる新規が ん遺伝子 HNF1B の同定と機能解析,第2回低酸素研究会

【その他特筆事項】

なし

平成 26 年度 金沢大学がん准展制御研究所 共同研究報告書

	平成 26 年度 金沢大学が	ふ進展制御研究所 共同研究報告書
研究区分		一般共同研究
	研究課題	分子標的薬耐性を克服する治療の安全性の前臨床評価
研究代表者	所属・職名・氏名	北海道大学大学院医学研究科探索病理・特任准教授・西原広史
研究分担者	所属・職名・氏名	北海道大学大学院医学研究科探索病理・特任助教・王磊
	所属・職名・氏名	北海道大学大学院医学研究科腫瘍病理・研究員・毛利普美
受入担当教員	職名・氏名	腫瘍内科研究分野・矢野聖二
【研究目的】	の課題となっている。我々は 併用による副作用出現を検記 ルのヒト組織との整合性や、	分子標的治療薬の薬剤耐性並びに副作用の克服は重要かつ喫緊 、昨年度までの本共同研究によって、Gefitinib 及び Crizotinib Eするマウスモデルの樹立に成功した。今年度はさらにこのモデ 治療効果予測及びその予防に関する病理学的因子の探索を行う 対する革新的治療法の開発を目指す。
【研究内容・成果】	1. EML4-ALK 融合遺伝子を発現している肺癌細胞株 A925L を用いて、分子標的薬である crizotinib, alectinib の有効性に対する病理学的評価を行った。 具体的には胸腔内に腫瘍細胞は 糖種させて、その後の骨転移や脳 転移の発症に対するこれらの薬剤の有効性を病理学的に評価した。その結果、alectinib の方が crizotinib に比して有効な腫瘍 転移抑制効果を発揮することが判明した (上図)。 2. 小細胞肺癌の細胞株 SBC-5 を用いて、HSP90 阻害剤である 17-DMAG の組織特異的な転移抑制効果の病理学的検討を行った。 In vivo imaging model を用いた検討の結果、骨及び肝臓ともに転移を有効に抑制することが示され、その機序として肝臓においては CRAF と AKT の活性の低下、骨においては破骨細胞の活性化が関与していることが示唆された (下図)。	
【成果等】	【主な論文発表】 Cancer Sci. 2015 Jan 8. do	oi: 10.1111/cas.12600. [Epub ahead of print]
	【学会発表】なし	
	【その他特筆事項】	

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

	研究区分	一般共同研究
研究課題		TKI 抵抗性慢性骨髄性白血病及びフィラデルフィア染色体陽
		性急性リンパ性白血病におけるエピジェネティック制御機構
		の解明と新規治療戦略構築
研究代表者	所属・職名・氏名	京都大学大学院医学研究科人間科学専攻創薬イノベーション
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		研究室・准教授・上久保靖彦
	所属・職名・氏名	京都大学大学院医学研究科人間健康科学専攻血液・生体防御学
		研究室・教授・足立壯一
	所属・職名・氏名	京都大学大学院医学研究科人間健康科学専攻血液・生体防御学
研究分担者		研究室・修士・森万純
	所属・職名・氏名	京都大学大学院医学研究科人間健康科学専攻血液・生体防御学
		研究室・修士・上山郁美
	 所属・職名・氏名	京都大学大学院医学研究科人間健康科学専攻血液・生体防御学
	/// 梅 400 1001	研究室・修士・野路由依
	min of the	
受入担当教員	職名・氏名	准教授・仲一仁
【研究目的】	本研究では	1 × 1
		ける RUNX1-HAT コンプレックス: p300、HIPK2 によるエピジェネテ
	イクス修飾の重要性の解明 ○RUNY1-HAT コンプレックス	抑制による造血器悪性腫瘍 RAS Gene Module (RGM) 抑制プロファイ
	ルの解明	所である。 対理的では、 対理的では、 対理的では、 対理的できる。 対理のできる。 ができる。 はる。 はる。 はる。 はる。 はる。 はる。 はる。 は
	○CML、Ph1ALL 白血病におけ	る腫瘍ニッチ環境下増殖機構抑制法を解明
	○造血器悪性腫瘍共通治療薬候	補としての HAT Inhibitor、HIPK2 Inhibitor 開発
	を中心に新規エピジェネティッ	ク薬剤開発及び独創的治療戦略提唱することを研究目的とする。
Tito di di		
【研究内容・成果】	知的財産権に係る内容であり、	
	CML、Ph1ALL 及び TKI 耐性 CML、に投与し、Ras Gene Module 構成終 JUN、Fos、FOXO など)の蛋白発 A、B 抑制剤の投与後、タイムコ TKI 耐性 BCR-ABL 白血病: A、B 邦 TKI 耐性は BCR-ABL ポイントミムを超えたコンセプトである(タマウスの骨髄にレトロウイルス(Ph1ALL)、PML-PAPA(APL) 導り TKI 耐性 CML マウスモデル及申請者らが独自で新規にスクリ治療効果を比較する(BCR-ABL F	にて、p210BCR-ABL(CML)、T351I-p210BCR-ABL(TKI 耐性 CML)、p190BCR-ABL 入モデルをセットアップ中、ワイルドタイプマウスに移植することによ び Ph1ALL マウスモデル、ATRA 耐性 APL マウスモデルを作成。 ーニングした A 抑制剤及び B 抑制剤、TKI 抑制剤(Imatinib)を投与し、
【成 果 等】	CML、Ph1ALL 及び TKI 耐性 CML、に投与し、Ras Gene Module 構成約 JUN、Fos、FOXO など)の蛋白発A、B 抑制剤の投与後、タイムコTKI 耐性 BCR-ABL 白血病: A、B 打KI 耐性は BCR-ABL 白血病: A、B 打KI 耐性は BCR-ABL ポイントミムを超えたコンセプトである(タマクスの骨髄にレトロウイルス(Ph1ALL)、PML-PAPA(APL)導り TKI 耐性 CML マウスモデル及申請者らが独自で新規にスクリ治療効果を比較する(BCR-ABL FI とな論文発表】Potent p300 inhibitor C646 lymphoblastic leukemia. Masumi Mori, Ken Morita, Yui Toshio Kitamura, Kosei Ito, BBRC 投稿準備中 【学会発表】 1:エピジェネティック制御による療法の開発」京都大学大学院医・分野路 由依、矢野 礼佳、上久に2:Inhibition of p300 induce cell	TKI 耐性 Ph1ALL 細胞株を用いた研究: A 抑制剤、B 抑制剤を各種細胞構 経路(古典的 MAPK 経路、PI3-Akt 経路、JAK-STAT 経路、その下流の C-Myc、現プロファイル、リン酸化ステータスを解明した。: 投稿準備中ースでサンプリングを行い、Micro-Array にて Heatmap 解析を行った。即制により BCR-ABL ヒュージョン蛋白自体及び C を効率的に消去できる。ユーテーションによるが、蛋白自体の消去が可能であり、耐性メカニス特許申請準備中)にて、p210BCR-ABL(CML)、T351I-p210BCR-ABL(TKI 耐性 CML)、p190BCR-ABIのスモデルをセットアップ中、ワイルドタイプマウスに移植することによび Ph1ALL マウスモデル、ATRA 耐性 APL マウスモデルを作成。ーニングした A 抑制剤及び B 抑制剤、TKI 抑制剤(Imatinib)を投与し、自血病)。 overcomes resistance to tyrosine kinase inhibitors in acute Noji, Ayaka Ikeuchi, Hidemasa Matsuo, Hiroshi Ito, Kazuhito Naka, Paul Liu, Yasufumi Kaneda, Yasuhiko Kamikubo and Souichi Adachi る遺伝子変異阻害メカニズムの解明と難治性急性骨髄性白血病個別化治学研究科人間健康科学専攻

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

	平成 26 年度 金沢大学が	ん進展制御研究所 共同研究報告書
研究区分		一般共同研究
研究課題		白血病幹細胞の in vivo 治療マウスモデルおよび標的薬剤に
		関する研究
研究代表者	所属・職名・氏名	神戸大学・講師・南陽介
受入担当教員	職名・氏名	准教授・仲一仁
【研究目的】	急性骨髄性白血病(Acute Mye	loid Leukemia; AML) 細胞株やプライマリー細胞を、骨髄ストローマ細
	胞共培養や免疫不全マウス (NOC	G、NODマウス)へ移植・継代する系を用いて、抗がん剤やキナーゼ阻害
	剤に対する微小環境における治療	療抵抗性モデルを樹立する。詳細な機序について、遺伝子発現プロファ
	イルや阻害剤パネルを用いた網絡	羅的解析等を行い、ヘッジホッグ(Hedgehog; Hh)シグナル伝達経路の
	病態関与を含めて解明する。Hh	シグナル上の Smoothened (SMO) 標的阻害剤は、AML を含む造血器腫瘍
	において臨床試験が進行中だが何	作用機序は明確ではなく、妥当なバイオマーカーの探索を行なうととも
	に、スクリーニングから得られる	た新規分子標的薬候補を含めて、治療抵抗性克服療法としての基盤を創
	出する。	
【研究内容・成果】	従来の白血病治療は、増殖能	が亢進した芽球細胞を死滅させることを目標に進められてきたが、多く
	の症例において一時的な寛解か	「得られるのみで長期の治癒が得られ難い状況である。 白血病幹細胞
	(leukemic stem cells; LSC)	が骨髄微小環境下において治療抵抗性を有することが示され、その機序
	としては、分子の発現異常・薬物	勿動態・生存シグナルの亢進・oncogene-addiction の差異・ニッチから
	のシグナルなどが複雑に絡み合	っていると考えられている。これらの特性を共有する細胞群に対する有
	効な治療法が、急性骨髄性白血:	病(AML)に対する突破口となり得ると期待されている。ヘッジホッグ
	(Hedgehog; Hh) シグナル伝達網	経路は、胎生期の臓器形成において重要な機能を担うとして研究が進め
	られてきたが、近年、複数の癌腫	腫におけるアベラントな活性化や、LCS の維持に対する関わりが示され
	つつある。Hh シグナルを制御す	る膜蛋白 Smoothened (SMO) を標的とする阻害剤は、基底細胞癌などに
	おいて治療効果を示し、AML に	対する早期臨床試験においても耐容性や有望な効果が示されているが
	(Jamieson, et al. ASH, 2011)	、詳細な作用様式・治療効果の裏付け (principle of concept; POC)
	などについては明らかにされてい	ハない。本研究は、AML における Hh シグナルの病態関与を解明するとと
	もに、新規 Hh 阻害剤 PF-913 の3	効果と POC の検証を目的として進められた、臨床検体や細胞株を含む基
	礎実験系を用いたトランスレージ	ショナル研究である。
	プライマリーAML 細胞の CD34	陽性細胞分画 (免疫不全マウスで高い白血病構築能を有する) において、
	Hh シグナルの活性上昇が示され	た。その分画に高頻度な静止期細胞が PF-913 投与によって減少し、コ
	ロニー形成や免疫不全マウス移植	電系における Hh シグナル阻害が白血病再構築能を低下させることが示
	され(正常臍帯血細胞への毒性に	は伴わず)、網羅的な DNA マイクロアレイ解析やメタボローム解析によっ
	ても裏付けられた。また、PF-91	3投与によって、静止期細胞の細胞周期回転が促され Ara-C との併用効
	果が認められることや、ストロー	ーマ共培養下における治療抵抗性が克服されることが示された。本研究
	の結果より、Hh シグナルに対す	る分子標的療法が、耐性・残存 AML に対する新たな治療戦略となり得る
1	1	

可能性が示唆された。

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

【成 果 等】

【主な論文発表】

1) Treatment with Hedgehog inhibitor, PF-913, attenuates leukemia-initiation potential in acute myeloid leukemia cells

Y Minami, N Fukushima, S Kakiuchi, H Minami, and T Naoe

Annals of Oncology, 25 (Suppl 5), 2014

2) Anti-cancer fatty-acid derivative induces autophagic cell death through modulation of PKM isoforms expression profile mediated by bcr-abl in chronic myeloid leukemia H Shinohara, K Taniguchi, M Kumazaki, N Yamada, Y Ito, Y Otsuki, B Uno, F Hayakawa, \underline{Y} Minami, and T Naoe

Cancer Letter, 360 (2015): 28-38, 2015

【学会発表】

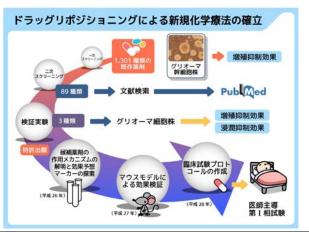
1) Treatment with Hedgehog inhibitor, PF-913, attenuates leukemia-initiation potential in acute myeloid leukemia cells

<u>Y Minami</u>, N Fukushima, H Minami, A Sadarangani, C Jamieson, and T Naoe AACR Annual Meeting , San Diego, USA, 2014

2) 急性骨髄性白血病に対するヘッジホッグ阻害剤 PF-913 による効果とバイオマーカーの検 討

南陽介 福島庸晃 鍬塚八千代 早川文彦 垣内誠司 南博信 C Jamieson 清井仁 直江 知樹

第76回日本血液学会総会(一般口演)、大阪、2014年


【その他特筆事項】

現在、主な成果に関して、論文投稿中(PNAS)

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書		
研究区分		一般共同研究
	研究課題	既存薬剤ライブラリーを用いた抗グリオーマ幹細胞効果を有
		する薬剤の同定
研究代表者	所属・職名・氏名	金沢大学医薬保健研究域医学系・教授・中田光俊
研究分担者	所属・職名・氏名	金沢大学医薬保健研究域医学系・大学院生・董宇
	所属・職名・氏名	金沢大学医薬保健研究域医学系・大学院生・北林朋宏
受入担当教員	職名・氏名	教授・平尾敦
【研究目的】	である。とりわけ本腫瘍の予後を物治療開発においては <u>ドラック</u> 適応外疾患に対する効果を調べ 本研究は、悪性グリオーマ発生 1,300 種類の既存医薬品の中から	された最も悪性の腫瘍の一つであり、本疾患の克服は医学上の重要課題を改善させるには新たな化学療法の確立が急務であると言える。新規薬 「リポジショニング」の有用性が認識されている。これは、既存医薬品の ることで適応拡大を目指す試みである。 生の根幹をなすグリオーマ幹細胞に対して抗腫瘍効果を有する薬剤を約 ら探索し悪性グリオーマに対する安全で効果的な化学療法を確立するこ 研究プロジェクトでは、グリオーマ幹細胞に対する効果的な既存薬剤を
【研究内容・成果】		ジェクト全体の概要は、グリオーマ幹細胞に対する効果的な既存薬剤の E用した簡便な前臨床試験を行った後の特許出願およびヒトへの応用(第

【研究内容のまとめ】研究プロジェクト全体の概要は、グリオーマ幹細胞に対する効果的な既存薬剤の同定から、独自の動物モデルを使用した簡便な前臨床試験を行った後の特許出願およびヒトへの応用(第I相臨床試験)の立案・遂行である(図)。初期の薬剤スクリーニングにより3種類の候補薬剤を同定し、そのうち有望な一剤の検証を行った。

【方法】サブタイプの異なる 2 種類のグリオーマ幹細胞株(Proneural type, Mesenchymal type)を使用した。がん進展制御研究所が保有する 1,301 種類の既存薬剤によるグリオーマ幹細胞の増殖抑制効果を調べるために非接着 384 穴プレートを用いた WST 増殖アッセイを行った。既存薬剤を 3 種類の濃度で振ってアッセイを行うことで濃度依存性の効果を検討した。陽性コントロールとして PI3K/mTOR 阻害剤である NVP-BEZ235 を使用した。引き続き 4 種類の膠芽腫細胞株(U87, U251, T98G, SNB19)を用いて

候補薬剤の増殖・浸潤抑制効果を AlamarBlue 増殖アッセイ、in vitro 遊走・浸潤アッセイにより観察した。

【結果】89 種類の薬物が様々な程度のグリオーマ幹細胞増殖抑制効果を示した。このうちこれまでの論文報告から新規性の高い薬剤を36 種類選別し、両サブタイプに対して濃度依存性かつ低濃度で強い効果を示す 3 種類の薬剤を選択した。このうち1種類の薬剤により、すべての膠芽腫細胞株に対して濃度依存性の増殖・浸潤抑制効果を確認した。

【成果】既存医薬品の中から有望な抗グリオーマ幹細胞薬を抽出した。動物実験を経て早期に臨床試験を計画し、膠芽腫に対する新規化学療法を確立したいと考えている。

【成 果 等】

【主な論文発表】

Tanaka S, <u>Nakada M</u>, Yamada D, Nakano I, Todo T, Ino Y, Hoshii T, Tadokoro Y, Ohta K, Ali MAE, Hayashi Y, Hamada JI, <u>Hirao A</u>. Strong therapeutic potential of γ-secretase inhibitor MRK003 for CD44-high and CD133-low glioblastoma initiating cells. *J Neurooncol* 121: 239-250, 2015

【学会発表】

- 1. 董宇、<u>中田光俊</u>、北林朋宏、古田拓也、<u>平尾敦</u>、林裕 Screening of existing approved drugs for inhibiting glioma stem cell proliferation 第 32 回日本分子脳神経外科学会,平成 26 年 9 月 25 日-26 日,山形
- 2. <u>中田光俊、</u>董宇、北林朋宏、古田拓也、<u>平尾敦</u>、林裕 ドラッグリポジショニングを指向したグリオーマ幹細胞に対する既存薬剤スクリーニング (シンポジウム) 第73回日本脳神経外科学会総会、平成26年10月9日-11日、東京
- 3. <u>中田光俊、</u>董宇、北林朋宏、古田拓也、宮下勝吉、木下雅史、<u>平尾敦</u>、林裕 グリオーマ幹細胞に対して抗腫瘍効果を有する既存医薬品の探索 第 32 回日本脳腫瘍学会、平成 26 年 11 月 30 日-12 月 2 日、千葉

【その他特筆事項】

抽出薬剤に関する特許出願を検討中

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

	研究区分	一般共同研究
研究課題		ERCC1 の高発現に起因するシスプラチン耐性化の機序に関す
		る研究
研究代表者	所属・職名・氏名	金沢大学医薬保健研究域薬学系・教授・松永司
研究分担者	所属・職名・氏名	金沢大学医薬保健研究域薬学系・助教・若杉光生
受入担当教員	職名・氏名	教授・平尾敦
【研 究 目 的】 【研究内容·成果】	DNA 傷害性抗がん剤による治療において、がん細胞の DNA 傷害応答反応をモジュレートでれば奏功性の向上が期待できる。最近、我々は化合物ライブラリースクリーニングによってメクレオチド除去修復(nuclectide excision repair; NER)反応を阻害する低分子化合物を見つけ、シスプラチンとの併用によりがん細胞の致死効果を増強させる結果を得た。またこの化合物は NER 必須因子の一つである ERCC1 の分解誘導を引き起こし、これが NER 阻害機序であることを明らかにした。本研究ではこの化合物の作用機序を究明し、ERCC1 の高発に起因するシスプラチン耐性化メカニズムの解明に寄与するとともに、耐性がんの治療にけた本化合物の応用に関して基礎データを得ることを目的とする。 ① ERCC1 の分解誘導メカニズムの解明 これまでの解析で、化合物 A6 による ERCC1 の分解誘導はプロテアソーム阻害剤 MG-132 が制されることがわかっていたが、今回、実際に ERCC1 のポリユビキチン化体を検出し、ERCO の分解自身がユビキチン・プロテアソーム依存的であることが示唆された。また、がん進の分解自身がユビキチン・プロテアソーム依存的であることが示唆された。また、がん進の分解自身がユビキチン・プロテアソーム依存的であることが示唆された。また、がん進の分解自身がユビキチン・プロテアソームを行いてあることが示唆された。また、がん進の分解自身がユビキチン・プロテアソームを行いてあることが示唆された。また、がん進の分解自身がユビキチン・プロテソームを行いた。その結果、キナーゼ阻害剤の1種おいて A6 による NER 阻害を抑制する作用が認められた。一方で、これらの阻害剤ライブラーの単独処理による NER 反応への影響も検討したところ、キナーゼ阻害剤から5種、ホスァターゼ阻害剤から3種において部分的な反応遅延が観察された。これらの阻害剤について市販品等を入手して再現性も含めてさらに検討を進める予定である。② ERCC1 を高発現に起因するシスプラチン抵抗性卵巣がん細胞に対する増感作用の検討 ERCC1 を高発現するシスプラチン抵抗性卵巣がん細胞を米国 Fox Chase Cancer Center か入手し、A6 処理後の ERCC1 の細胞内レベルを測定したところ、これまでに調べたがん細胞同様に、ERCC1 の顕著な減少が観察され、このタイプの耐性がんの治療に有用である可能性によれた。 第 幹細胞への影響を検討するための関連技術の習得 骨髄から造血幹細胞および造血前駆細胞を分離する技術の教授を受けて習得した。	
【成 果 等】	【主な論文発表】 Wakasugi, M., Sasaki, T., Matsumoto, M., Nagaoka, M., Inoue, K., Inobe, M., Horibata, K., Tanal K. and Matsunaga, T. (2014). Nucleotide excision repair—dependent DNA double—strand broformation and ATM signaling activation in mammalian quiescent cells., J. Biol. Chem., 28 28730—28737. Enkhtuya, R., Sato, T., Wakasugi, M., Tuvshintugs, B., Miyata, H., Sakurai, T., Matsunaga, and Yoshioka, K. (2014). The scaffold protein JLP plays a key role in regulating ultravious—B-induced apoptosis in mice., Genes Cells, 19, 350—358. Zhao, X., Nogawa, A., Matsunaga, T., Takegami, T., Nakagawa, H. and Ishigaki, Y. (2014). Protease inhibitors and knockdown of SMG1 cause accumulation of Upf1 and Upf2 in human cells., Int. Oncol., 44, 222—228. 【学会発表】 松永司、斎藤臣雄、長田裕之、遠藤良夫:シスプラチン抵抗性関連因子 ERCC1 を分解誘導する新規分子化合物の同定、第18回日本がん分子標的治療学会学術集会、平成26年6月25-27日、仙台、高森千枝、宮崎幸太郎、西永真理、大澤琢郎、若杉光生、松永司:DNA 修復因子 ERCC1-XPFの安定と細胞内局在性を決定する要因の解析、日本薬学会第135年会、平成27年3月25-28日、神戸. 【その他特筆事項】 特になし	

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

		トん
	研究区分	マウスモデルを用いた消化器がん発生・悪性化に関する研究 (腫瘍遺伝学研究分野)
	研究課題	消化器癌の増殖・進展ににおけるプロスタグランジン輸送体の 役割の解明
研究代表者	所属・職名・氏名	金沢大学薬学系・准教授・中西猛夫
受入担当教員	職名・氏名	教授・大島正伸
【研究目的】	慢性大腸炎は大腸癌のリスク因子であり、プロスタグラジン E_2 (PGE_2) は大腸炎および大腸癌の進展に寄与する炎症メディエーターである。 PGE_2 は細胞内で合成され受容体に作用するが、大腸腫瘍組織における PGE_2 濃度調節機構は十分に理解されていない。申請者らは、これまでに PGE_2 の細胞内外の濃度が膜輸送体 $SLCO2A1$ (PGT) により厳密に制御され、 PGT の機能欠損が炎症性疾患の進展に貢献することを報告してきた ($PLOS$ ONE 10 :e0123895. 2015)。このような背景から、本研究においては、マウス大腸癌モデルを用いて PGT が大腸癌の増殖・進展に果す役割を検討した。	
【研究内容・成果】	】 ヒト大腸癌 LoVo 細胞において、酸化的ストレスの付与により、PGE2の細胞内局在へ変化し、Pgt が形質膜付近へ移行することが明らかになった。PGT のノックダウンにより、細胞外の PGE2 量が有意に減少した。これらの結果から、細胞内で合成された PGE2の細胞外への分泌に、PGT が関わり細胞内外の濃度調節に主要な役割を果すことが明らかにした。メカニズムについては今後の検討が必要である。	
【成 果 等】	human colorectal cancer of JSSX Meeting, October 19 2. 大野康弘、中西猛夫、大グランジン輸送体 PGT の日)	mai I: Prostaglandin transporter (PGT)-mediated PGE2 secretion from cells in response to oxidative stress. 19th North American ISSX/29th 0-23, 2014, San Francisco, CA, USA (ポスター) に島浩子、大島正伸、玉井郁巳「大腸癌の増殖におけるプロスタの役割」 日本薬学会第 135 年会、神戸(口頭、2015 年 3 月 27
	【その他特筆事項】 本研究成果により、財団法人	北國がん研究振興財団より助成金を受けた。

平成 26 年度 金沢大学がん進展制御研究所 共同研究報告書

		トん進展制御研究所 共同研究報告書
研究区分		一般共同研究
	研究課題	HGF-Met シグナルを阻害する Lect2 の骨転移における役割
研究代表者	所属・職名・氏名	金沢大学・特任准教授・石井清朗
研究分担者	所属・職名・氏名	金沢大学・教授・篁俊成
研先分担有 	所属・職名・氏名	金沢大学・准教授・御簾博文
	所属・職名・氏名	金沢大学・研究員・菊地晶裕
受入担当教員	職名・氏名	教授・松本邦夫
【研究目的】	しく患者の QOL を低下させ 間では命にかかわる病態には は効果が薄いことから、骨へ が現状である。 今研究では Lect2 と HGF-M な癌転移抑制剤としての可能	シウム血症、骨折、神経圧迫症候群といった合併症のため、著る。しかし、骨転移による癌形成が他の臓器より遅いため、短期はなり難いことに加え、他の臓器では有効な治療法が骨転移癌に、の積極的な治療は先送りとなり、対処療法にとどまっているの Met 系による骨転移の関与をシグナル伝達の面から解明し、新た性を探る。また Lect2 は肥満により肝臓からの分泌量が増えるの関係を明らかにすることも目的としている。
【研究内容・成果】	Lect2 ノックアウトマウス できたとが分かった、結果といったとが分かった、結果といったとのでは、結果といった。 PGC-1 βのが上昇し、ではマクロファージのよいでは、 PGC-1 βのができます。 PGC-1 βののできます。 PGC-1	における骨形態計測を行い、野生型マウスよりも骨量が減少して 所脂肪食を与え肥満状態にすると野生型マウスの血液中における してノックアウトマウスとの骨量の差がより大きくなることも分 細胞よりも破骨細胞に大きな影響があり、Lect2 添加によってマ 細胞への分化が抑制されること、その過程でのシグナル、転写因 発現抑制、ERK のリン酸化の抑制がみられることが分かった。分 一ジから前破骨細胞という分化初期に影響が大きく、成熟破骨 がなかった。Lect2 ノックアウトマウスにおいても、血清中の骨 がなかった。Lect2 ノックアウトマウスにおいても、血清中の骨 がなかった。Lect2 ノックアウトマウスにおいても、血清中の骨 が、なかった。性化マーカーの方が顕著に増加していた。骨芽細胞 薬系幹細胞の増殖は緩やかに抑制するものの、分化段階には大き に得細胞へ Lect2 を添加した際の遺伝子発現を網羅的に解析する い、炎症に伴う遺伝子の発現が増えており、さらに樹状細胞様の にいることが分かった。 に化する因子を分泌することが知られている。 細胞で発現が抑制される遺伝子には TGF-βや IGF-1 といったが まれていた。これらの因子が肝臓から分泌される Lect2 によっ に性化と相まってがん細胞の骨転移を抑制する可能性がある。今 いても Lect2 による抑制作用があるか検討していく。
【成果等】	【主な論文発表】なし 【学会発表】なし	
	【その他特筆事項】 なし	

平成 26 年度 金沢大学がん准展制御研究所 共同研究報告書

	平成 26 年度 金沢大学が	K 人進展制御研究所 共同研究報告書
研究区分		一般共同研究
	研究課題	GSK3β阻害による食道発癌の予防とその機序の解明
研究代表者	所属・職名・氏名	金沢大学附属病院・肝胆膵移植再生外科・助教・宮下知治
	所属・職名・氏名	金沢大学医薬保健研究域医学系・がん局所制御学・ 教授・太田哲生
研究分担者	所属・職名・氏名	金沢大学医薬保健研究域医学系・がん局所制御学・ 准教授・藤村隆
	所属・職名・氏名	金沢大学附属病院・肝胆膵移植再生外科・助教・田島秀浩
	所属・職名・氏名	金沢大学医薬学総合研究科・がん局所制御学・ 大学院生・松井大輔
受入担当教員	職名・氏名	教授・源利成
【研究目的】	ット)腺癌の発生が増加しているとの混合液を食道に逆流させる 的なモデルである。また、この認められることも報告されているとが注目されていることから、2 がおおいに予想される。そこでな	本邦でも大腸癌や乳癌とともにバレット食道(前癌病変)や食道(バレる。当教室が開発したラット食道発癌モデルは十二指腸液あるいは胃液手術を行うと、発癌剤を投与せずに約40週後に食道腺癌が発生する画期モデルで発生する腫瘍はヒトの食道腺癌と非常に類似した遺伝子変化がる。一方、GSK3βの発現や活性の亢進が大腸癌の増殖に関与しているこ食道の扁平上皮癌よりはむしろ食道腺癌の発生過程に関与していること本研究では、この食道発癌に対するGSK3β阻害による化学予防の可能性評価するために共同実験を行うこととした。
	一方、本報告の段階では、まだ- これまでに屠殺した固体の観 の近位側の食道壁は拡張、肥厚。 は食道腫瘍の発生は観察されず、 結果より、GSK3β阻害は食道の 現在、切除標本を用いてβ-カ	3β 阻害剤の AR-A014418 ($2mg/kg$ 体重)を投与)の標本を採取している。一部のラットの治療を継続中であり、治療実験は完了していない。 察により、対象群では食道空腸吻合部に食道腺癌が高頻度に発生し、そとバレット食道が観察された。一方、 $GSK3\beta$ 阻害剤投与群では肉眼的に、食道壁の病的所見は認められないか軽微であった(図 $1a$, b)。以上の慢性炎症に伴う食道腺癌発生を抑制することが示唆される。 17 テニンや $Cyclin\ D1$ の発現も免疫染色を用いて検討しており、 β - カテことや、 $Cyclin\ D1$ の核内での発現を高率に認めている(図 $2a$, b)。
	(吻合部は明瞭で下部食 (吻ん 道の拡張も認めず、粘膜 下	Db. 対照群 図 2a. β-カテニン発現 図 2b. Cyclin D1 発現合部に腫瘍が発生し、 部食道は拡張して、粘 認も粗造である)
	1	病変組織を対象に病理組織学的検査、免疫組織学的検査、分子生物学的よる GSK3β 阻害剤のがん化学予防効果や有害作用の解析を順次行う。
【成 果 等】	【主な論文発表】なし	
	【学会発表】 なし	
	【その他特筆事項】 なし	

	平成 26 年度 金沢大学が	ら る が が が が が が が が が が が が が
研究区分		一般共同研究
	研究課題	骨肉腫の GSK3β を標的とする新規治療法の開発と分子メカニズム
研究代表者	所属・職名・氏名	金沢大学医学保健学総合研究科・特任教授・山本憲男
研究分担者	所属・職名・氏名	金沢大学医学系研究科機能再建学・教授・土屋弘行
	所属・職名・氏名	金沢大学附属病院・医員・下崎真吾
受入担当教員	職名・氏名	教授・源利成
【研究内容·成果】	骨肉腫の標準的治療は化学療法 継続できない症例も認められる。 いるが、骨肉腫は希少疾患である 大である。このような背景からま し、臨床応用へ向けて死を行い、 発のための基礎的研究を行い、 ① In vitro まず、Western blot による骨 ついで、GSK3β 阻害薬(AR-Ad 制効果とアポトーシス誘導を検 いることを TOP/FOP Flash luc ② In vivo ①を受けて、骨肉腫細胞移植 ※①②から骨肉腫に対する GSK (Fig. 1) (Fig.	(a) DMSO (n-4) 1.5 HOS 1.5 HOS
	β-actin	0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

【成 果 等】

【主な論文発表】

骨芽細胞と比較して活性型 GSK3β が高かった。 (Fig.2) 阻害薬投与後 WST-8 Assay。骨肉腫細胞増殖抑制効

(Fig.3)骨肉腫細胞移植マウス

に対する GSK3β 阻害薬の効果、

腫瘍体積、重量ともに減少した。

なし

【学会発表】

果を認めた。

第41回日本生体電気・物理刺激研究会(横浜)

American Society of Clinical Oncology 50th Annual Meeting (シカゴ、米国)

72 96

AR-A014418 or SB-216763: □—□5 μM ■—■ 10 μM △—△25 μM

0

第 47 回日本整形外科学会骨·軟部腫瘍学術集会(大阪)

第123回中部日本整形外科災害外科学会・学術集会(名古屋)

第29回日本整形外科学会基礎学術集会(鹿児島)

【その他特筆事項】

この研究に対する論文は現在 Cancer Science 誌に投稿中である。

Shimozaki S, Minamto T, et al. Therapeutic effect of glycogen synthase kinase 3β inhibition against osteosarcoma via β -catenin activation. Cancer Sci, in submission.

■ AR-A014418

■ SB-216763

**P < 0.01 *P < 0.05