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Tumor cell invasion and resistance to therapy are the most intractable biological

characteristics of cancer and, therefore, the most challenging for current cancer

research and treatment paradigms. Refractory cancers, including pancreatic cancer

and glioblastoma, show an inextricable association between the highly invasive

behavior of tumor cells and their resistance to chemotherapy, radiotherapy and tar-

geted therapies. These aggressive properties of cancer share distinct cellular path-

ways that are connected to each other by several molecular hubs. There is

increasing evidence to show that glycogen synthase kinase (GSK)-3b is aberrantly

activated in various cancer types and this has emerged as a potential therapeutic

target. In many but not all cancer types, aberrant GSK3b sustains the survival,

immortalization, proliferation and invasion of tumor cells, while also rendering

them insensitive or resistant to chemotherapeutic agents and radiation. Here we

review studies that describe associations between therapeutic stimuli/resistance

and the induction of pro-invasive phenotypes in various cancer types. Such cancers

are largely responsive to treatment that targets GSK3b. This review focuses on the

role of GSK3b as a molecular hub that connects pathways responsible for tumor

invasion and resistance to therapy, thus highlighting its potential as a major cancer

therapeutic target. We also discuss the putative involvement of GSK3b in determin-

ing tumor cell stemness that underpins both tumor invasion and therapy resis-

tance, leading to intractable and refractory cancer with dismal patient outcomes.

O ne of the well-recognized but still poorly understood
characteristics of cancer is its ability to adapt and survive

in a harsh microenvironment. Tumor cells survive the hypoxic
and starved conditions by changing their morphological and
biological properties and by interacting with tumor-associated
stromal components.(1) Another striking characteristic of can-
cers is their ability to invade host organs and to resist thera-
peutic insults, thus limiting the success of curative tumor
resection and leading to tumor metastasis and therapy failure.
These pathological behaviors of cancer are associated with
acquisition of the hallmark biological traits of cancer.(2–4)

Despite recent advances in cancer treatments, the existence of
unresectable and recurrent cancers that share the persistent
capacity for invasion, metastasis and therapy resistance
remains a challenge for current medical therapies.(5,6) Although
our knowledge of the molecular and biological mechanisms by
which cancer evolves to the refractory stage is increasing,(2)

few strategies have been established to attenuate the ability of
tumors to invade or to prevent the failure of therapy.
Modern options for cancer treatment consist of surgery,

cytotoxic or cytostatic chemotherapeutics, radiation, molecular-

targeted and immunomodulating agents, and their multidisci-
plinary combination.(7,8) These treatments aim primarily to
reduce tumor cell survival and proliferation, but not to elimi-
nate invasive ability or resistance to therapy. Therefore, under-
standing the pathways by which cancer cells acquire both
invasive and therapy-resistant phenotypes is critical for the
development of more efficient therapeutic strategies against
refractory cancers and, therefore, improvements in patient sur-
vival. Apart from the known mediators of invasion and therapy
resistance [reviewed in Alexander and Friedl(9)], one emerging
candidate is glycogen synthase kinase (GSK)-3b. This
molecule has been extensively implicated in critical cell
biology processes and has causal roles in common diseases
including glucose intolerance, neurodegenerative disorders and
cancer.(10–12) Here we review previous studies that have
reported on the association between therapeutic stimuli/resis-
tance and induction of pro-invasive phenotypes in various can-
cer types. Many of these cancers have proven to be responsive
to experimental treatment which targets GSK3b. This review
focuses on the role of GSK3b as a molecular hub that connects
pathways responsible for tumor invasion and resistance to
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therapy, thus highlighting this kinase as a promising multipur-
pose cancer therapeutic target. It also discusses a putative role
for GSK3b in sustaining the tumor cell “stemness” that is cen-
tral to both tumor invasion and therapy resistance, thereby
leading to intractable cancer and resulting in treatment
failure.(13–15)

Invasion and therapy resistance co-segregate in refractory
cancer

High invasiveness and resistance to therapy are common bio-
logical and clinical characteristics of refractory cancer that rep-
resent major challenges for research and treatment. The
mechanisms involved in tumor invasion include cell motility
and migration, degradation of the extracellular matrix and
interaction with stromal and inflammatory cells. These are
orchestrated in a way that enables the tumor to invade the host
organ and often beyond.(3,4) An early morphological and func-
tional change for tumor cells of epithelial origin to acquire a
proinvasive phenotype is epithelial to mesenchymal transition
(EMT), altering cell behavior to resemble a mesenchymal
type.(16,17) The major modes by which cancers evade the effect
of anti-cancer drugs include intrinsic (or constitutive) resis-
tance and acquired resistance. Constitutive resistance to ther-
apy may be due to mutational activation of signaling for cell
survival, cytoprotective alterations in the cell cycle and in
DNA repair ability, differences in the efficiency of drug uptake
and efflux by cancer cells, and insufficient drug delivery [re-
viewed in Alexander and Friedl(9)]. Acquired resistance to
chemotherapeutic and molecular-targeted agents involves dis-
tinct mechanisms, including genetic alterations to the drug tar-
gets, activation of surrogate prosurvival pathways, and
interactions between tumor cells and components of the tumor
environment [reviewed in Holohan et al.(5), Ramos and Ben-
tires-Alj(6) and Alexander and Friedl(9)]. Intra-tumor hetero-
geneity emerges in many tumors and often underlies their
resistance to therapeutic agents.(18,19)

The processes of tumor invasion and therapy resistance and
their underlying mechanisms are often investigated as indepen-
dent pathological events in cancer. However, recent studies
(shown in Table 1) have demonstrated that tumor cells acquire
morphological and functional proinvasive phenotypes with the
ability to migrate and invade following the development of
resistance to anti-cancer therapeutics (Suppl. References [SR]
1–24) (Data S1).(SR1–24) The therapeutic modalities included
conventional chemotherapeutic agents(SR1–15), different types
of radiation therapy(SR16–20) as well as bioactive compounds
targeting epidermal growth factor (EGF) receptor and vascular
endothelial growth factor (VEGF).(SR21–24) These studies indi-
cate the therapeutic insult and/or resistance elicits proinvasive
phenotypes and evokes the invasive capability of tumor cells
in a broad spectrum of cancer types, including breast, colorec-
tal, pancreatic, ovarian and prostate cancers, as well as rare
intractable tumors (e.g. glioblastoma and osteosarcoma). A
large number of preclinical studies have demonstrated that all
available cancer treatments, including surgery, facilitate meta-
static tumor spread. Such treatment often results in therapeutic
benefit, but occasionally also results in resistance, leading to
the paradoxical concept of “treatment-induced metastasis” [re-
viewed in Ebos(20)]. These experimental and preclinical studies
suggest that the invasive behavior of cancer cells and their
acquired resistance to therapy may not be separate pathological
properties and could, instead, represent interconnected pro-
cesses [reviewed in Alexander and Friedl(9)].

Regardless of the tumor type and therapeutic agent, the pro-
posed mechanisms for invasion and resistance are attributable
to molecular pathways that participate in tumor cell survival,
transition to mesenchymal (EMT) and cancer stem cell (CSC)
phenotypes, migration and invasion with extracellular matrix
degradation, and drug efflux (Table 1). The reported molecules
that mediate and interconnect these pathways include growth
and transcription factors, chemokines, RAS and Rho family
members (e.g. Ras, Rac1) and cell-matrix adhesion molecules
(e.g. integrin family and focal adhesion kinase [FAK])
(Table 1).(9) Bevacizumab is a humanized monoclonal anti-
body to VEGF used clinically as an anti-angiogenic agent.
Acquired resistance to bevacizumab leads to enhanced tumor
cell invasion due to the metabolic shift to glycolysis and
degradation and remodeling of tumor stromal tissues.(SR21–24)

A better understanding of the biological mechanisms underly-
ing the tight association between tumor invasion and therapy
resistance should provide a solid rationale for the development
of innovative cancer treatments.(9)

Aberrant GSK3b in cancer

GSK3 is a family of serine/threonine protein kinases compris-
ing two highly conserved isoforms, GSK3a and GSK3b, that
show approximately 85% overall homology and 98% homol-
ogy in their kinase domains. GSK3 is constitutively active in
normal cells and its activity is regulated by the differential
phosphorylation at serine (S) residues 21 (pGSK3aS21) and 9
(pGSK3bS9) (both inactive forms), and tyrosine (Y) residues
279 (pGSK3aY279) and 216 (pGSK3bY216) (both active forms)
(Fig. 1a,b). GSK3 regulates a diverse array of physiological
cellular functions via the phosphorylation of and interaction
with various proteins (Fig. 1c). Although the two GSK3 iso-
forms share many substrates, they are not functionally identical
and show some differences in their substrate specificity [re-
viewed in Beurel et al.(10)]. Negative regulation of GSK3
activity is desirable to maintain physiological cellular func-
tions. A growing number of studies have demonstrated that
deregulated GSK3 activity contributes to the pathogenesis and
progression of various diseases, including glucose intolerance,
neurodegenerative disorders, and chronic inflammatory and
immunological diseases.(10,21) This points to GSK3 being an
attractive and druggable target for a broad spectrum of dis-
eases.(22) Consequently, many GSK3 inhibitor compounds have
been developed in academic and pharmaceutical institutes over
recent years. Some are reported to inhibit both the a and b iso-
forms with different affinities,(SR25–28) while others are specific
for GSK3b (reviewed in SR25,26). Among the latter com-
pounds, it was reported that AR-A014418 does not inhibit the
activity of 26 closely related kinases and is, therefore, consid-
ered to be highly specific for GSK3b.(SR29)

Of the two GSK3 isoforms, most studies in the field of
oncology have focused on GSK3b. This is partly because of
the functional redundancy of the two isoforms in regulating
the canonical Wnt/b-catenin pathway, responsible for generat-
ing the most prevalent oncogenic signaling.(23,24) Based on its
known effects on several proto-oncoproteins (e.g. b-catenin,
cyclin D1 and c-Myc), cell cycle regulators (e.g. p27Kip1) and
mediators of EMT (e.g. snail) (Fig. 1c), it has long been rec-
ognized that GSK3b suppresses tumor development [reviewed
in Clevers and Nusse,(24) Jope et al.,(25) Luo(26) and McCubrey
et al.(27)], as discussed later (Table S1).(SR30–58) Paradoxically,
our earlier studies found increased expression and deregulated
activity of GSK3b due to changes in the differential
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Table 1. Representative previous studies showing interrelationship between therapeutic stimuli/resistance and pro-invasive phenotype in

cancer

Tumor type Therapeutic insults
Biological mechanism (Suppl.

Reference number)

Therapeutic effect of GSK3b inhibition and

underlying mechanism (Reference number)

Breast cancer Tamoxifen EGFR pathway, enhanced tumor

cell motility and invasion(SR1)

Suppression of invasion through dysregulation

of actin-reorganization via down-regulation

of WAVE2(68)Tamoxifen EMT induction with EGFR

pathway-dependent b-catenin

activation(SR2)

Adriamycin Twist 1-meditaed EMT induction

and P-gp up-regulation(SR3)

Doxorubicin and

cyclophosphamide

alone or in

combination

TNF-a/NF-jB-mediated

amplification of CXCL1 paracrine

network between carcinoma,

myeloid, and endothelial

cells(SR4)

Colorectal cancer Oxaliplatin NF-jB-mediated EMT induction

with enhanced cell migration

and invasion(SR5)

Suppression of tumor cell survival and

proliferation by inhibition of hTERT/

telomerase and promoting p53-dependent

apoptosis(28–30,32,33) and invasion by down-

regulation of WAVE2,(68) and enhancing 5-FU

effect via PARP1-dependent and AIF-mediated

necroptosis(73)

Erlotinib EMT induction(SR21)

Pancreatic cancer Gemcitabine EMT induction with activation of

b-catenin and c-Met and

acquisition of CSC

phenotype(SR6)

Suppression of tumor cell survival and

proliferation(30) by inhibition of NF-jB

transcriptional activity,(34,35) synergistic with

gemcitabine by restoration of Rb function(60)

and inhibition of TP53INP1-mediated DNA

repair,(70) increase in radiosensitivity and

suppression of invasion via FAK/Rac1/MMP-2

and CXCR4/MMP-2 pathways(60,67)

Gemcitabine Acquisition of EMT and CSC

phenotypes with activation of

Notch pathway(SR7)

Gemcitabine, 5-FU,

cisplatin

Gene expression profile

responsible for EMT

phenotype(SR8)

Gemcitabine NF-jB-mediated acquisition of

EMT and CSC phenotypes(SR9)

c-irradiation Tumor cell migration and

invasion with enhanced MMP-2

activity(SR16)

Erlotinib EMT induction(SR21)

Ovarian cancer Taxol, vincristine Increased expression of twist(SR10) Suppression of tumor cell proliferation by

decrease in cyclin D1 expression(39)Paclitaxel Acquisition of EMT and

metastatic potential(SR11)

Cisplatin, taxol Acquisition of EMT via

endothelin A receptor-mediated

pathway(SR12)

Prostate cancer Taxol, vincristine Increased expression of twist(SR10) Suppression of tumor cell survival and

proliferation by eliminating TRAIL resistance,

repressing AR activity,(41–44) and attenuation

of metastasis by depleting CSC population(78)

Docetaxel Gene expression profile

responsible for EMT

phenotype(SR13)

Other epithelial cancer

Endometrial Ionizing radiation EMT induction with enhanced

cell migration(SR17)

Suppression of tumor cell survival by

interrupting ERK-mediated prosurvival

pathway(40)

Bladder Taxol, vincristine Increased expression of twist(SR10) Suppression of tumor cell survival and

proliferation by inhibition of NF-jB

transcriptional activity(45)

Tongue Cisplatin EMT induction and enhanced cell

migration and invasion in

association with increased BMI1

by down-regulation of miR-200b

and miR-15b(SR14)

Not shown

Nasopharyngeal Taxol, vincristine Increased expression of twist(SR10) Not shown
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phosphorylation of S9 and Y216 residues in gastrointestinal
cancers, glioblastoma and osteosarcoma compared to respec-
tive normal cells and tissues.(28–31) These observations sug-
gested that GSK3b could participate in cancer development
and progression, despite the general belief that it has tumor-
suppressive functions.(25–27) We and other research groups
have shown that inhibition of GSK3b activity with specific
pharmacological inhibitors, or inhibition of its expression by
RNA interference, can preferentially attenuate the survival and
proliferation of tumor cells and induce them to undergo apop-
tosis. This effect has been observed not only in gastrointestinal
and pancreatic cancer cells(28–30,32–35) but also in glioblas-
toma,(31,36,37) osteosarcoma (S. Shimozaki, N. Yamamoto, T.
Domoto, H. Nishida, K. Hayashi, H. Kimura, A. Takeuchi, S.
Miwa, K. Igarashi, T. Kato, Y. Aoki, T. Higuchi, M. Hirose,

R.M. Hoffman, T. Minamoto, H. Tsuchiya, unpublished data,
2016)(38) and other malignant neoplasms such as gynecological
and urogenital cancers,(39–47) soft tissue sarcomas,(48,49) hema-
tological malignancies(50,51) and lung cancers.(52,53) This accu-
mulating evidence firmly establishes GSK3b as a valuable
target in cancer treatment.(11,12)

There has been substantial interest in the molecular mecha-
nisms by which GSK3b favors tumor progression and by
which inhibition of its activity or expression attenuates tumor
cell survival, immortalization and proliferation. The reported
mechanisms for tumor cell survival include the nuclear factor
(NF)-jB-mediated prosurvival pathway,(34–36,38) tumor cell
resistance to apoptosis induced by tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL),(41) and failure of the p53-
mediated tumor suppressor pathway or of the Rb-mediated cell

Table 1 (Continued)

Tumor type Therapeutic insults
Biological mechanism (Suppl.

Reference number)

Therapeutic effect of GSK3b inhibition and

underlying mechanism (Reference number)

Glioblastoma Doxorubicin Therapeutic effect and

enhancement of doxorubicin

effect by a new anti-invasive

small molecule (IB)(SR15)

Suppression of tumor cell survival and

proliferation by restoring p53/p21 pathway

and inhibition of c-Myc, NF-jB and abnormal

glycolysis,(31,36) synergistic with temozolomide

and increase in radiosensitivity via

Rb-mediated and c-Myc/DMNT3A/MGMT

pathways,(31,69) suppression of invasion(58,59,61)

by inhibition of FAK/Rac1/JNK pathway(61) and

induction of CSC differentiation(37,77)

Sublethal

irradiation

Enhanced tumor cell migration

and invasion involving avb3

integrin, MMP-2, MMP-9, MT1-

MMP, TIMP-2 and BCL-2/BAX

rheostat(SR18)

Ionizing radiation Enhanced tumor cell migration

with increased expression of b3

and b1 integrins(SR19)

Bevacizumab Resistance to the therapy is

associated with up-regulation of

MMP-2, MMP-9, MMP-12,

TIMP1, SPARC and HIF-2a, and

with activation of bFGF-

mediated alternate angiogenesis

pathway(SR22)

Bevacizumab Treatment of tumor xenograft is

associated with decrease of

mitochondria, induction of

glycolytic metabolites (lactate

and alanine) and HIF-1a, and

activation of PI3K pathway(SR23)

Bevacizumab Resistance to the therapy

induced genes associated with a

mesenchymal origin, cellular

migration/invasion, and

inflammation.(SR24)

Osteosarcoma Low-dose photon

irradiation

Enhanced cell migration and

invasion concomitant with up-

regulation of avb3 integrin(SR20)

Suppression of tumor cell survival and

proliferation by inhibition of NF-jB

transcriptional activity(38) and restoring

b-catenin osteosarcoma suppressor

(S. Shimozaki et al.)†

†S. Shimozaki et al., unpublished observation. AIF, apoptosis-inducing factor; AR, androgen receptor; BAX, Bcl-2-associated X protein; bFGF, basic
fibroblast growth factor; BMI1, B lymphoma Mo-MLV insertion region 1 homolog; CSC(s), cancer stem-like cell(s); CXCL1, chemokine (C-X-C motif)
ligand 1; CXCR4, CXC receptor type 4; DNMT3A, DNA (cytosine-5)-methyltransferase 3A; EGFR, epidermal growth factor receptor; EMT, epithelial-
mesenchymal transition; ERK, extracellular signal-regulated kinase; FAK, focal adhesion kinase; 5-FU, 5-fluorouracil; HIF, hypoxia inducible factor;
hTERT, human telomerase reverse transcriptase; JNK, c-Jun N-terminal kinase; MGMT, O6-methylguanine DNA methyltransferase; miR, micro-RNA;
MMP, matrix metalloproteinase; MT1-MMP, membrane type 1-MMP; NF-jB, nuclear factor-jB; PARP1, poly [ADP-ribose] polymerase 1;P-gp, P-
glycoprotein (multidrug resistance); PI3K, phosphatidyl-inositol-3-kinase; Rb, retinoblastoma; SPARC, secreted protein, acidic, cysteine rich; SR,
supplementary reference No.; TIMP, tissue inhibitor of MMP; TNF-a, tumor necrosis factor-a; TP53INP1, tumor protein p53-inducible nuclear protein 1;
TRAIL, tumor necrosis factor-related apoptosis-inducing ligand; WAVE2,WAS (Wiskott-Aldrich syndrome) protein family member 2.
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cycle regulation.(31,32) Preservation of telomere length by
maintaining activity of human telomerase reverse transcriptase
(hTERT) and telomerase also immortalizes tumor cells in
response to the aberrant activation of GSK3b.(30) Cell prolifer-
ation pathways mediated by c-Myc and cyclin D1 sustain
tumor cell proliferation that is dependent on GSK3b.(36,39) In
osteosarcoma and rhabdomyosarcoma, the induction of b-cate-
nin signaling, a well-known tumor suppressive mechanism in
these cancers, has been linked to decreased cell proliferation
following GSK3b inhibition (S. Shimozaki et al., unpublished
data).(49) Another recent study reported that mitotic catastrophe
caused by disruption of centrosome biodynamics was associ-
ated with attenuated tumor cell survival and proliferation fol-
lowing GSK3b inhibition.(54) Importantly, GSK3b has little
impact on the cell survival, immortalization and growth of nor-
mal cells, where the differential phosphorylation of S9 and
Y216 residues functions to fine tune GSK3b activity.(28–31,34)

The growing body of evidence on the role of aberrant GSK3b
in sustaining and promoting cancer cell survival, immortaliza-
tion and proliferation, together with the differential effects of
GSK3b inhibition on cancer and normal cells, underpins the
targeting of GSK3b as a novel cancer treatment.(11,12)

GSK3b mediates both the invasive phenotype and therapy
resistance in refractory cancer

The dependency of cancer cells on GSK3b for their survival
and proliferation has encouraged further studies on whether
aberrant GSK3b participates in tumor cell invasion and therapy
resistance, the two major determinants of patient outcome.(3–6)

As shown in Table 1, most tumors that acquire pro-invasive
phenotypes as they evade therapy are susceptible to experi-
mental treatment involving inhibition of GSK3b. Here we
review what is known about the involvement of GSK3b in
tumor invasion and resistance to therapy based on our previous
studies in pancreatic cancer and glioblastoma. These are repre-
sentative of lethal tumors and are characterized by high inva-
sive capacity and resistance to available therapies.(55,56)

GSK3b and cancer invasion. While GSK3b plays pivotal roles
in cytoskeletal organization, cell polarity and migration in the
physiological processes of organogenesis and wound heal-
ing,(57) little is known about its role in cancer cell motility,
migration and invasion. Earlier studies showed that lithium
chloride and some indirubins, both classical GSK3-inhibiting
agents, inhibited the migration and invasion of glioblastoma

Fig. 1. (a) Comparison of the structural and functional domains of the two GSK3 isoforms, (b) the sites (S9 and Y216) of phosphorylation of
GSK3b by different kinases regulating GSK3b activity, and (c) the substrates of GSK3b and proteins that interact with it. (a) GSK3a (51 kD) and
GSK3b (47 kD) are products of their respective genes located in chromosomes 19q13 and 3q13. The isoforms share high (98%) homology of the
catalytic domains, and GSK3a has a glycine-rich extension at the N-terminal side. Blue and red narrow columns indicate the sites of serine (S)
and tyrosine (Y) phosphorylation, respectively. (b) The kinases indicated in blue phosphorylate GSK3b-S9 resulting in its inactivation, while those
indicated in red phosphorylate GSK3b-Y216 resulting in its activation. (c) GSK3b stabilizes/activates (red arrows) and destabilizes/inactivates (blue
lines) various transcription factors as well as structural and functional proteins. AP-1, activator protein 1; APC, adenomatous polyposis coli; BAX,
BCL2-associated X protein; BCL, B-cell lymphoma; C, C-terminal of protein; C/EBP, CCAAT (cytosine-cytosine-adenosine-adenosine-thymidine)-
enhancer-binding protein; cdc25A, cell division cycle 25 homolog A; CREB, cAMP (cyclic adenosine monophosphate) response element binding
protein; CRMP2, collapsin response mediator protein 2; eIF2B, eukaryotic initiation factor 2B; FAK, focal adhesion kinase; FGD-1/3, FYVE RhoGEF
(guanine nucleotide exchange factor) and PH domain-containing protein 1/3; FKHR, forkhead in rhabdomyosarcoma; Gly, glycine; GR, glucocorti-
coid receptor; GS, glycogen synthase; GSK3b, glycogen synthase kinase 3b; HIF-1a, hypoxia inducible factor-1a; HSF-1, heat shock transcription
factor-1; ILK, integrin-linked kinase; IPF1/PDX1, insulin promoter factor 1/pancreatic and duodenal homeobox 1; IRS1, insulin receptor substrate
1; LRP5/6, lipoprotein receptor-related protein 5/6; MafA, musculoaponeurotic fibrosarcoma oncogene homolog A; MAP1B/2C, microtubule asso-
ciated protein 1B/2C; Mcl1, myeloid cell leukemia 1; mCRY2, mouse cryptochrom 2; MDM2, mouse double minute 2 homolog; MEK, MAPK (mito-
gen-activated protein kinase)/ERK (extracellular signal-regulated kinase) kinase; MITF, microphthalmia-associated transcription factor; MLK3,
mixed lineage kinase 3; N, N-terminal of protein; NAC-a, nascent polypeptide-associated complex subunit-a; NF-AT, nuclear factor of activated T-
cells; NF-jB, nuclear factor-jB; Nrf2, nuclear factor erythroid 2-related factor 2; p130RB, p130 retinoblastoma; p21CIP1, p21 CDK (cyclin-depen-
dent kinase)-interacting protein 1; p90RSK, p90 ribosomal protein S6 kinase; PDH, pyruvate dehydrogenase; PKA, protein kinase A; PKC, protein
kinase C; PP2A, protein phosphatase 2A; PPAR, peroxisome proliferator-activated receptor; PTEN, phosphatase and tensin homolog; Pyk-2, pro-
line-rich tyrosine kinase 2; RAR, retinoic acid receptor; Red1, RNA-editing deaminase 1; S, serine; SRC-3, steroid receptor coactivator-3; SREBP,
sterol regulatory element-binding protein; TSC2, tuberous sclerosis complex 2; VDAC, voltage-dependent anion channel; Y, tyrosine
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cells, but the mechanism underlying this effect was not
clear.(58,59) Subsequently, we demonstrated that inhibition of
GSK3b by a specific pharmacological inhibitor and by RNA
interference decreases the capacity for migration and invasion
of pancreatic cancer and glioblastoma cells and of their tumors
in animal models.(60,61) Morphologically, these effects were
associated with reduced formation of lamellipodia and
invadopodia, the horizontal and vertical cellular surface
microarchitectures, respectively, that drive cell migration, stro-
mal degradation and invasion.(62,63) Inhibition of GSK3b dis-
rupted the functional subcellular colocalization of Rac1(64) and
cortactin(63) with the cytoskeletal molecule F-actin in lamel-
lipodia and invadopodia, respectively. These changes in the
pro-invasive phenotype of tumor cells following GSK3b inhi-
bition coincide with the suppression of molecular pathways
mediated by focal adhesion kinase (FAK),(65) guanine nucleo-
tide exchange factors (GEF)/Rac1(64,66) and c-Jun N-terminal
kinase (JNK). This results in decreased expression of matrix
metalloproteinase (MMP)-2 and membrane type (MT) 1-MMP.
Our observations therefore suggest that GSK3b sustains tumor
invasion via the promotion of morphological and functional
pro-invasive cellular phenotypes and that the molecular axis
involves FAK, GEFs/Rac1 and JNK (Fig. 2).(60,61)

Subsequent to our studies,(60,61) other workers have reported
the proinvasive effect of GSK3b in pancreatic, colorectal and
breast cancer cells in association with modulation of cytoskele-
tal organization and cytokine-mediated matrix degrada-
tion.(67,68). These studies highlight the pivotal role of GSK3b
in tumor invasion and probably also in metastatic spread.

GSK3b and cancer therapy resistance. The combination of
multiple agents having different targets and mechanisms of
actions is important in the treatment of cancer in order to opti-
mize the therapeutic effects and minimize the adverse effects.
This is particularly relevant for the treatment of refractory can-
cer, and, hence, molecular-targeted therapy is often combined
with conventional chemotherapeutics and/or radiation therapy,
as well as with other targeted agents.(7,8) As discussed above,
accumulating evidence on the effects of GSK3b inhibition
against cancer cell survival and proliferation has led us to

address whether this could be used in combination with
chemotherapy and irradiation.
The standard treatment modalities prescribed are often inef-

fective in patients with refractory tumors such as pancreatic
cancer and glioblastoma.(55,56) We have shown that administra-
tion of a GSK3b-specific pharmacological inhibitor (e.g.
AR-A014418)(SR29) at a dose below that which results in a
therapeutic effect when given on its own can significantly
enhance the cytotoxic effects of temozolomide and gemc-
itabine.(31,60,69,70) These are the standard chemotherapeutic
agents prescribed for patients with glioblastoma and pancreatic
cancer, respectively.(55,56) Low-dose GSK3b inhibitor given in
combination with chemotherapeutic agents had additive and
synergistic effects. Investigation of the underlying molecular
mechanism is crucial to justify treatment combinations of
GSK3b inhibitor with other anti-cancer therapeutics (Fig. 3).
In glioblastoma, the combined effect was attributed to
modulation of the mouse double minute (Mdm)2/p53 and
c-Myc-mediated pathways resulting in epigenetic silencing of
O6-methylguanine DNA methyltransferase (MGMT), a clini-
cally proven biomarker of temozolomide efficacy(56) in tumor
cells (Fig. 3b).(31,69) In pancreatic cancer, inhibition of tumor
GSK3b activity decreased cyclin D1/cyclin-dependent kinase
(CDK)4/6 complex-dependent phosphorylation of Rb tumor
suppressor protein.(60) One of the important functions of Rb is
to bind the oncogenic transcription factor E2F1 and inhibit its
transcriptional activity.(71,72) GSK3b may, therefore, sensitize
pancreatic cancer to gemcitabine by downregulating the
expression of ribonucleotide reductase, a well-known pharma-
cological biomarker of gemcitabine(55) that is regulated by the
Rb/E2F pathway (Fig. 3a).(71,72) In addition to modulation of
this pathway, we found that downregulation of the TP53INP1
gene (encoding tumor p53-induced-nuclear-protein 1) involved
in DNA repair is associated with the chemosensitizing effect
of GSK3b inhibitor.(70) The GSK3b inhibitor used in these
studies also sensitized both pancreatic cancer and glioblastoma
to ionizing radiation.(31,60) This radio-sensitizing effect may
depend on the restoration of Rb function following GSK3b
inhibition, resulting in the inability of E2F1 to induce the tran-
scription of thymidylate synthase and thymidine kinase
(Fig. 3a).
Other recent studies have also reported that GSK3b inhibi-

tion allows therapy-resistant colon and pancreatic cancer cells
to become susceptible to 5-fluorouracil (5-FU),(73) and renal
cell carcinoma cells to become susceptible to a synthetic mul-
tikinase inhibitor (sorafenib) that targets growth signaling and
angiogenesis.(74) Together, these studies suggest that GSK3b
participates in multiple molecular pathways used by various
cancer types to evade chemotherapy, radiotherapy and targeted
therapies.
Collectively, a growing body of experimental evidence sup-

ports the notion that GSK3b is a molecular “hub” that medi-
ates and connects various pathways responsible for tumor
invasion and resistance to therapy. Together with the role of
GSK3b in promoting tumor cell survival and proliferation and
its differential functions between tumor and normal cells [re-
viewed in Miyashita et al.(11) and McCubrey et al.(12)], this
evidence reinforces the promise of novel cancer therapeutic
strategies that target GSK3b.

Future perspectives

Targeting of the biological pathways that link tumor invasion
and therapy resistance is clearly an attractive prospect for the

Fig. 2. Putative molecular pathway through which deregulated
GSK3b promotes tumor cell migration and invasion. The exact molecu-
lar pathway by which GSK3b mediates the activation of FAK (open
arrow) remains to be determined. FAK, focal adhesion kinase; GDP,
guanosine diphosphate; GEF, guanine nucleotide exchange factor;
GSK3b, glycogen synthase kinase 3b; GTP, guanosine triphosphate;
JNK, c-Jun N-terminal kinase; MMP, matrix metalloproteinase;
MT1-MMP, membrane type 1-MMP; circled P, phosphorylation.

© 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd
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development of innovative cancer treatments. Another impor-
tant challenge is to understand the biology of cancer initiating
or stem-like cells (CSC) so that “stemness” phenotypes can
also be targeted. Based on the clonal evolution model of
tumorigenesis and on the normal stem cell concept, CSC are
conceptually defined as a population of tumor cells with self-
renewing and pluripotent capacity.(13) CSC have been identi-
fied in a wide range of hematopoietic malignancies and solid
tumors and are assumed to be progenitors of the entire neo-
plastic cell population. One of the most striking characteristics
of CSC is their influence on tumor cell plasticity, intra-tumor
heterogeneity, invasion and metastasis, therapy resistance and
tumor relapse after surgery and adjuvant treatment.(14,75) Eradi-
cation of CSC is, therefore, of paramount clinical importance
for combatting refractory cancer.(15,76)

GSK3b has pivotal functions in normal cell biology(10,21,22)

and is also central to the processes of cancer cell survival, pro-
liferation, invasion and therapy resistance, as discussed above.
A number of studies have reported that CSC phenotypes share
unique molecular pathways and tumor–environment interac-
tions that are also associated with tumor invasion and therapy
resistance.(14,75) This leads us to propose a working hypothesis
whereby GSK3b underlies the basal mechanism for sustaining
the CSC phenotype (Fig. 4). Recent studies have shown that
GSK3b negatively controls the differentiation of malignant
glioma cells,(77) and that GSK3b inhibition results in depletion
of cancer stem-like or progenitor-like cells and attenuation of
metastatic spread in prostate cancer.(78) Consistent with the
physiological roles of GSK3b in negatively regulating canoni-
cal Wnt/b-catenin and hedgehog signaling,(10,23,24) inhibition
of GSK3b is a prerequisite for the maintenance of “stemness”
phenotypes in embryonic and hematopoietic stem cells.(79,80)

Therefore, future work should aim to understand the influence
of GSK3b on both tumor and normal stem cell phenotypes.
This knowledge can be applied for the development of novel
cancer treatments that target GSK3b.
One of the concerns about targeting GSK3b for cancer treat-

ment is that its inhibition may promote the progression of
existing tumors [reviewed in Takahashi-Yanaga(22), Jope
et al.,(25) Luo(26) and McCubrey et al.(27)]. A number of

studies have focused on the putative tumor suppressive role of
GSK3b (Table S1).(SR30–58) Many of these report inactivation
or activation of GSK3b as a mediating event in pathways lead-
ing to tumor progression or suppression, respectively. An
inverse association between tumor expression of GSK3b (ei-
ther total or active form pGSK3bY216) and the survival of can-
cer patients has been reported.(SR33,36,37) Other studies found
causal links between pharmacological GSK3b inhibition and/or
depletion of GSK3b expression (e.g. gene knockout and RNA
interference) or activity (e.g. recombinant kinase-dead or con-
stitutively active mutant form) and tumor cell survival, prolif-
eration(SR40,52) and susceptibility to cancer therapies.(SR32,34,58)

GSK3b inhibition strategies and the development of GSK3b-
targeted agents therefore require careful evaluation to deter-
mine whether the tumor promoting function of GSK3b is
counteracted by its putative tumor suppressor function in dif-
ferent cancer types.
The development and administration of GSK3b inhibitors

for the treatment of chronic diseases, including diabetes

Fig. 3. (a) Putative molecular pathway that links
GSK3b activity with the resistance of pancreatic
cancer cells to DNA damage induced by
gemcitabine and ionizing radiation. The effects of
GSK3b on E2F-dependent gene transcription and on
the expression of RR, TS and TK remain to be
determined. CDK, cyclin-dependent kinase; E2F, E2
factor; circled P, phoshorylation; Rb, retinoblastoma
(tumor suupressor protein); RR, ribonucleotide
reductase; TK, thymidine kinase; TS, thymidylate
synthase. (b) Regulation of MGMT expression by
GSK3b signaling in glioblastoma. GSK3b inhibition
results in c-Myc activation directly and via
activation of b-catenin-mediated signaling, which
consequently increases recruitment of DNMT3A by
c-Myc to the MGMT promoter, thus increasing de
novo DNA methylation in the MGMT promoter. The
methylated status of the MGMT promoter increases
the sensitivity of glioblastoma to temozolomide.
DNMT3A, DNA (cytosine-5)-methyltransferase 3A;
MGMT, O6-methylguanine DNA methyltransferase.

Fig. 4. Involvement of GSK3b in the representative pathological hall-
marks of cancer. GSK3b positively regulates the distinct molecular
pathways and participates in survival, proliferation, migration and
invasion of tumor cells and their insensitivity and resistance to cancer
therapy. The cancer stemness phenotypes might underlie the process
of these pathological hallmarks. Abbreviations are defined in
Figures 1, 2 and 3.
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mellitus, neurodegenerative disorders and cancer, requires seri-
ous awareness of the safety issues. A major concern is whether
and how GSK3b can be targeted to treat disease, because its
systemic inhibition may lead to unwanted effects by disrupting
multiple biological pathways (Fig. 1c). Most notably, long-
term inhibition of GSK3b may initiate tumorigenesis due to its
role in suppressing proto-oncogenic pathways, in particular
that are mediated by b-catenin [reviewed in Takahashi-
Yanaga(22), Jope et al.,(25) Luo(26) and McCubrey et al. (27)]. A
previous study showed that genetic deletion of GSK3b in
mammary epithelial cells resulted in b-catenin activation and
induced intraepithelial neoplasia that progressed to the devel-
opment of adenosquamous carcinoma.(SR51) Moreover, overex-
pression of wild-type and constitutively active mutant GSK3b
in 12-O-tetradecanoylpholbor-13-acetate (TPA)-mediated,
transformation-resistant mouse epidermal cells suppressed
EGF-mediated and TPA-mediated anchorage-independent
growth in soft agar and tumorigenicity in rodents
(Table S1).(SR56) However, there is currently no direct evi-
dence to support tumor development in vivo following treat-
ment with a GSK3b inhibitor [reviewed in Miyashita et al.(11)

and SR27]. As discussed in previous studies that report cancer
therapeutic effects of GSK3b inhibition (Table 1), none of the
available experimental GSK3b inhibitors induces neoplastic
transformation of non-neoplastic (normal) cells or tumor devel-
opment in experimental animal models [reviewed in Miyashita
et al.(11) and SR27]. Long-term prescription of lithium, the
only GSK3b inhibitor approved for the treatment of bipolar
disorder since the 1950s, has not been associated with an
increased risk of cancer or death from cancer.(SR59) Post-trans-
lational regulation of GSK3b activity via the phosphorylation
of S9 and Y216 (pGSK3bS9 versus pGSK3bY216) (Fig. 1b) in
response to various stimuli could partly underlie a mechanism
that protects normal cells from the detrimental effects of
GSK3b inhibition.
Despite the concerns outlined above, clinical trials for neu-

rodegenerative diseases and cancer have tested some seed
pharmacological GSK3(b) inhibitor compounds and also
approved medicines with the ability to inhibit GSK3b activity
(Table S2). The former trials include AZD-1080 (AstraZeneca)
for the treatment of Alzheimer’s disease (phase I), and
NP031112 (tideglusive; Noscira SA) for the treatment of pro-
gressive supranuclear palsy (NCT01049399: phase IIb)(SR60,61)

and of Alzheimer’s disease (NCT01350362: phase II).(SR62,63)

Clinical trials for cancer treatment have used LY2090314 (Eli
Lilly) alone for acute leukemia (NCT01214603: phase II), and
the same compound in combination: (i) with gemcitabine, the
combined folate, 5-FU and oxaliplatin (FOLFOX) regimen or
the combined gemcitabine and nab-paclitaxel regimen for
metastatic pancreatic cancer (NCT01632306: phase I/II); and

(ii) with pemetrexed and carboplatin for advanced or meta-
static solid cancer (NCT01287520: phase I).(SR64,65) Our group
is undertaking the phase I/II clinical trials by repurposing
approved GSK3b-inhibiting medicines (combined cimetidine,
lithium, olanzapine and valproate regimen) in combination
with gemcitabine for advanced pancreatic cancer
(UMIN000005095) and with temozolomide for recurrent
glioblastoma (UMIN000005111) (T. Furuta, H. Sabit, D. Yu,
K. Miyashita, M. Kinoshita, M. Kinoshita, Y. Hayashi, Y.
Hayashi, T. Minamoto, M. Nakada, unpublished data, 2016).
Currently, information regarding the side effects of GSK3b

inhibitors is limited because the clinical trials have evaluated
only a small number of seed compounds and also because
lithium chloride is the only currently approved inhibitor for
clinical use. It is, therefore, difficult to predict what serious
adverse events, if any, will occur in patients treated with
GSK3b inhibitors. The extent of GSK3b inhibition and the dif-
ferential effects between normal and diseased cells/tissues
(therapeutic window) are critical determining factors for thera-
peutic efficacy and undesirable side effects. It is clear that
GSK3b activity is deregulated in various pathological
conditions, including many, but not all, cancer types
(Table 1).(10–12,22,25–27) Identifying the range of GSK3b inhibi-
tion that is efficient for treatment of disease but which results in
minimal detrimental effects to normal tissues and organs will be
important for the clinical application of GSK3b inhibitors.
Numerous studies have shown that, in addition to differential
phosphorylation at S9 and Y216 residues (Fig. 1a,b), the subcel-
lular localization of GSK3b together with various upstream
pathways can regulate the expression and activity of this kinase
[reviewed in Beurel et al.(10) and Takahashi-Yanaga(22)]. New
classes of GSK3b inhibitors that spatially and temporally con-
trol the expression and activity of GSK3b may therefore be
required to reduce the risk of adverse events such as carcinogen-
esis that may be associated with long-term GSK3b inhibition.
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